Odpowiedź:
z.1
a ) x³ - 6 x² -2 x + 12 = 0
x²*(x - 6 ) - 2*( x - 6 ) = 0
( x - 6)*( x² - 2) = 0
( x - 6 )*(x - √2)*(x + √2 ) = 0
x = 6 lub x = √2 lub x = - √2
=================================
b ) ( x³ + 8 )*(x² - 9)*(x² - 7 )*(x² + 16) = 0
x³ + 8 = 0 lub x² - 9 = 0 lub x² - 7 = 0 x² + 16 > 0
x = - 2 lub x = - 3 lub x = 3 lub x = - √7 lub x = √7
===========================================================
c ) [tex]x^6 - x^5 -2 x^4 = 0[/tex]
[tex]x^4*( x^2 - x - 2) = 0[/tex]
x = 0 lub ( x + 1)*(x - 2) = 0
x = 0 lub x + 1 = 0 lub x - 2 = 0
x = 0 lub x = - 1 lub x = 2
=============================
d ) [tex]x^3 - 10 x^2 + 32 x - 32 = 0[/tex]
x = 2 bo [tex]2^3 - 10*2^2 + 32*2 - 32 = 0[/tex]
Dzielenie
( x³ - 10 x² + 32 x - 32 ) : ( x - 2) = x² - 8 x + 16
- x³ + 2 x²
------------------------
- 8 x² + 32 x
8 x² - 16 x
16 x - 32
- 16 x + 32
-----------------
0
oraz x² - 8 x + 16 = 0
( x - 4 )² = 0
x - 4 = 0
x = 4
Odp. x = 2 lub x = 4 - podwójny
=======================
z.2
W( x) = - x³ + m x² - 3 x -2 m
W( - 1 ) = 4 więc - ( - 1)³ + m*( - 1)² - 3*(- 1) -2 m = 4
1 + m + 3 - 2 m = 4
- m = 0
m = 0
=======
z.3
W ( x) = ( m+ k) x³ - k x + 7 G ( x) = 10 x³ +2 x + 7
W ( x ) = G ( x) ⇔ m + k = 10 i -k = 2
k = - 2 m - 2 = 10 ⇒ m = 12
Odp. k = - 2 , m = 12
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
z.1
a ) x³ - 6 x² -2 x + 12 = 0
x²*(x - 6 ) - 2*( x - 6 ) = 0
( x - 6)*( x² - 2) = 0
( x - 6 )*(x - √2)*(x + √2 ) = 0
x = 6 lub x = √2 lub x = - √2
=================================
b ) ( x³ + 8 )*(x² - 9)*(x² - 7 )*(x² + 16) = 0
x³ + 8 = 0 lub x² - 9 = 0 lub x² - 7 = 0 x² + 16 > 0
x = - 2 lub x = - 3 lub x = 3 lub x = - √7 lub x = √7
===========================================================
c ) [tex]x^6 - x^5 -2 x^4 = 0[/tex]
[tex]x^4*( x^2 - x - 2) = 0[/tex]
x = 0 lub ( x + 1)*(x - 2) = 0
x = 0 lub x + 1 = 0 lub x - 2 = 0
x = 0 lub x = - 1 lub x = 2
=============================
d ) [tex]x^3 - 10 x^2 + 32 x - 32 = 0[/tex]
x = 2 bo [tex]2^3 - 10*2^2 + 32*2 - 32 = 0[/tex]
Dzielenie
( x³ - 10 x² + 32 x - 32 ) : ( x - 2) = x² - 8 x + 16
- x³ + 2 x²
------------------------
- 8 x² + 32 x
8 x² - 16 x
------------------------
16 x - 32
- 16 x + 32
-----------------
0
oraz x² - 8 x + 16 = 0
( x - 4 )² = 0
x - 4 = 0
x = 4
Odp. x = 2 lub x = 4 - podwójny
=======================
z.2
W( x) = - x³ + m x² - 3 x -2 m
W( - 1 ) = 4 więc - ( - 1)³ + m*( - 1)² - 3*(- 1) -2 m = 4
1 + m + 3 - 2 m = 4
- m = 0
m = 0
=======
z.3
W ( x) = ( m+ k) x³ - k x + 7 G ( x) = 10 x³ +2 x + 7
W ( x ) = G ( x) ⇔ m + k = 10 i -k = 2
k = - 2 m - 2 = 10 ⇒ m = 12
Odp. k = - 2 , m = 12
=======================
Szczegółowe wyjaśnienie: