Odpowiedź:
z.1
[tex]a_n = 6 - 4 n[/tex] więc [tex]a_{n+1} = 6 - 4*(n + 1) = 6 - 4 n - 4 =2 - 4 n[/tex]
oraz [tex]a_{n+1} - a_n = ( 2 - 4 n ) - ( 6 - 4 n ) = - 4 = constans[/tex]
Jest to ciąg arytmetyczny o różnicy r = - 4.
=========================================
z.2
r = 7 [tex]a_9 = 23[/tex]
więc [tex]a_1 + 8 r = a_1 + 8*7 = 23\\a_1 + 56 = 23\\a_1 = - 33\\[/tex]
[tex]a_n = a_1 + ( n - 1)*r = - 33 + ( n - 1)*7 = - 33 + 7 n - 7 = 7 n - 40\\a_n = 7 n - 40[/tex]
=============
z.3
[tex]a_6 = a_1 + 5 r = 11\\a_{11} = a_1 + 10 r = - 4[/tex]
więc
10 r - 5 r = - 4 - 11
5 r = - 15 /: 5
r = - 3
----------------
[tex]a_1 + 5* ( - 3) = 11\\a_1 = 11 + 15 = 26[/tex]
---------------------------
[tex]a_n = a_1 + ( n - 1)*r = 26 + ( n - 1)*(- 3) = 26 - 3 n + 3 = - 3 n + 29[/tex]
==============================================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
z.1
[tex]a_n = 6 - 4 n[/tex] więc [tex]a_{n+1} = 6 - 4*(n + 1) = 6 - 4 n - 4 =2 - 4 n[/tex]
oraz [tex]a_{n+1} - a_n = ( 2 - 4 n ) - ( 6 - 4 n ) = - 4 = constans[/tex]
Jest to ciąg arytmetyczny o różnicy r = - 4.
=========================================
z.2
r = 7 [tex]a_9 = 23[/tex]
więc [tex]a_1 + 8 r = a_1 + 8*7 = 23\\a_1 + 56 = 23\\a_1 = - 33\\[/tex]
[tex]a_n = a_1 + ( n - 1)*r = - 33 + ( n - 1)*7 = - 33 + 7 n - 7 = 7 n - 40\\a_n = 7 n - 40[/tex]
=============
z.3
[tex]a_6 = a_1 + 5 r = 11\\a_{11} = a_1 + 10 r = - 4[/tex]
więc
10 r - 5 r = - 4 - 11
5 r = - 15 /: 5
r = - 3
----------------
[tex]a_1 + 5* ( - 3) = 11\\a_1 = 11 + 15 = 26[/tex]
---------------------------
[tex]a_n = a_1 + ( n - 1)*r = 26 + ( n - 1)*(- 3) = 26 - 3 n + 3 = - 3 n + 29[/tex]
==============================================================
Szczegółowe wyjaśnienie: