Se patea un balón de fútbol con un ángulo de 37° con una velocidad de 20 m/s. Calcule:
a) La altura máxima.
b) El tiempo que permanece en el aire.
c) La distancia a la que llega al suelo.
d) La velocidad en X y Y del proyectil después de 1 seg de haber sido disparado
Datos
Ángulo = 37°a) Ymax = ?d) Vx =?Vo = 20m/sb) t total = ?Vy = ?g= -9.8 m/s^2c) X = ?
Paso 1
Vox = Vo Cos a = 20 m/s Cos 37° = 15.97 m/s
Voy = Vo Se n a = 20 m/s Sen 37° = 12.03 m/s
Paso 2
Calcular el tiempo de altura máxima , donde Voy = 0
Por lo tanto : t = (Vfy - Voy) / g = (0 - 12.03 m/s) / 9.8 = 1.22.seg.
Paso 3
Calcular a) la altura máxima:
Ymax = Voy t + gt^2 / 2= 12.03 m/s ( 1.22s) + (( -9.8m/s^2 )(1.22s)^2) / 2 = 7.38m
Paso 4
Calcular b) el tiempo total . En este caso solo se multiplica el tiempo de altura máxima por 2, porque sabemos que la trayectoria en este caso es simétrica y tarda el doble de tiempo en caer el proyectil de lo que tarda en alcanzar la altura máxima.
T total = tmax (2) = 1.22s (2) = 2.44 s.
Paso 5
Calcular el alcance máximo, para lo cual usaremos esta formula:
X = Vx t total = 15.97 m/s ( 2.44s) = 38.96 m.
Paso 6
Vfy = gt + Voy = (- 9.8) ( 1seg.) + 12.03 m/s = 2.23 m/s
Vfx = 15.97 m/s ,ya que esta es constante durante todo el movimiento.
EJEMPLOS
Se patea un balón de fútbol con un ángulo de 37° con una velocidad de 20 m/s. Calcule:
a) La altura máxima.
b) El tiempo que permanece en el aire.
c) La distancia a la que llega al suelo.
d) La velocidad en X y Y del proyectil después de 1 seg de haber sido disparado
Datos
Ángulo = 37°a) Ymax = ?d) Vx =?Vo = 20m/sb) t total = ?Vy = ?g= -9.8 m/s^2c) X = ?Paso 1
Vox = Vo Cos a = 20 m/s Cos 37° = 15.97 m/s
Voy = Vo Se n a = 20 m/s Sen 37° = 12.03 m/s
Paso 2Calcular el tiempo de altura máxima , donde Voy = 0
Por lo tanto : t = (Vfy - Voy) / g = (0 - 12.03 m/s) / 9.8 = 1.22.seg.
Paso 3
Calcular a) la altura máxima:
Ymax = Voy t + gt^2 / 2= 12.03 m/s ( 1.22s) + (( -9.8m/s^2 )(1.22s)^2) / 2 = 7.38m
Paso 4
Calcular b) el tiempo total . En este caso solo se multiplica el tiempo de altura máxima por 2, porque sabemos que la trayectoria en este caso es simétrica y tarda el doble de tiempo en caer el proyectil de lo que tarda en alcanzar la altura máxima.
T total = tmax (2) = 1.22s (2) = 2.44 s.
Paso 5
Calcular el alcance máximo, para lo cual usaremos esta formula:
X = Vx t total = 15.97 m/s ( 2.44s) = 38.96 m.
Paso 6
Vfy = gt + Voy = (- 9.8) ( 1seg.) + 12.03 m/s = 2.23 m/s
Vfx = 15.97 m/s ,ya que esta es constante durante todo el movimiento.