Odpowiedź:
[tex]\displaystyle m^{2} (x+1)+4x=(m+2)^2\\m^{2} x+m^{2} +4x=m^{2} +4m+4\\x(m^{2} +4)=4m+4/:(m^{2} +4)\\x=\frac{4m+4}{m^{2}+4 } \\m(mx+1)+4(x+1)=6\\m^{2} x+m+4x+4=6\\x(m^{2} +4)=2-m/:(m^{2} +4)\\x=\frac{2-m}{m^{2} +4}\quad m\in R \\\frac{2-m}{m^{2} +4}=\frac{4m+4}{m^{2} +4}/(m^{2} +4)\\2-m=4m+4\\5m=-2/:5\\m=-\frac{2}{5}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\displaystyle m^{2} (x+1)+4x=(m+2)^2\\m^{2} x+m^{2} +4x=m^{2} +4m+4\\x(m^{2} +4)=4m+4/:(m^{2} +4)\\x=\frac{4m+4}{m^{2}+4 } \\m(mx+1)+4(x+1)=6\\m^{2} x+m+4x+4=6\\x(m^{2} +4)=2-m/:(m^{2} +4)\\x=\frac{2-m}{m^{2} +4}\quad m\in R \\\frac{2-m}{m^{2} +4}=\frac{4m+4}{m^{2} +4}/(m^{2} +4)\\2-m=4m+4\\5m=-2/:5\\m=-\frac{2}{5}[/tex]