Odpowiedź:
x² + ( m - 5) x + m² - 6 m + 5 = 0
a = 1 b = m - 5 c = m² - 6 m + 5
1° Δ > 0
2° [tex]x_1^2 + x_2^2 > 7[/tex]
więc
1° ) Δ = ( m - 5)² - 4*1*(m² - 6 m + 5) = m² - 10 m +25 - 4 m² + 24 m - 20
Δ = - 3 m² + 14 m + 5 > 0
Δ[tex]_m[/tex] = 14² - 4*(-3)*5 = 196 + 60 = 256
[tex]m_2 = \frac{-14 - 16}{2*(-3)} = 5[/tex] [tex]m_1 = \frac{-14 + 16}{-6} = - \frac{1}{3}[/tex]
m ∈ ( - [tex]\frac{1}{3} ; 5 )[/tex]
===============
2° ) ( [tex]x_1 + x_2)^2 = x_1^2 + 2 x_1*x_2 + x_2^2[/tex]
więc [tex]x_1^2 + x_2^2 = ( x_1 + x_2)^2 - 2 x_1*x_2[/tex]
Z wzorów Viete'a mamy
= 5 - m - 2*( m² - 6 m + 5 ) = 5 - m - 2 m² + 12 m - 10 = - 2 m² + 11 m - 5 > 7
- 2 m² + 11 m - 5 > 7
- 2 m² + 11 m - 12 > 0
Δ[tex]_M =[/tex] 121 - 4*(- 2)*(-12) = 121 - 98 = 25
[tex]m_4 = \frac{- 11 - 5}{2*(-2)} = 4[/tex] [tex]m_3 = \frac{-11 + 5}{- 4} = 1,5[/tex]
[tex]m[/tex] ∈ ( 1,5 ; 4 )
------------------------
Z 1° i 2° ⇒ m ∈ ( 1,5 ; 4)
===============================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
x² + ( m - 5) x + m² - 6 m + 5 = 0
a = 1 b = m - 5 c = m² - 6 m + 5
1° Δ > 0
2° [tex]x_1^2 + x_2^2 > 7[/tex]
więc
1° ) Δ = ( m - 5)² - 4*1*(m² - 6 m + 5) = m² - 10 m +25 - 4 m² + 24 m - 20
Δ = - 3 m² + 14 m + 5 > 0
Δ[tex]_m[/tex] = 14² - 4*(-3)*5 = 196 + 60 = 256
[tex]m_2 = \frac{-14 - 16}{2*(-3)} = 5[/tex] [tex]m_1 = \frac{-14 + 16}{-6} = - \frac{1}{3}[/tex]
m ∈ ( - [tex]\frac{1}{3} ; 5 )[/tex]
===============
2° ) ( [tex]x_1 + x_2)^2 = x_1^2 + 2 x_1*x_2 + x_2^2[/tex]
więc [tex]x_1^2 + x_2^2 = ( x_1 + x_2)^2 - 2 x_1*x_2[/tex]
Z wzorów Viete'a mamy
= 5 - m - 2*( m² - 6 m + 5 ) = 5 - m - 2 m² + 12 m - 10 = - 2 m² + 11 m - 5 > 7
- 2 m² + 11 m - 5 > 7
- 2 m² + 11 m - 12 > 0
Δ[tex]_M =[/tex] 121 - 4*(- 2)*(-12) = 121 - 98 = 25
[tex]m_4 = \frac{- 11 - 5}{2*(-2)} = 4[/tex] [tex]m_3 = \frac{-11 + 5}{- 4} = 1,5[/tex]
[tex]m[/tex] ∈ ( 1,5 ; 4 )
------------------------
Z 1° i 2° ⇒ m ∈ ( 1,5 ; 4)
===============================
Szczegółowe wyjaśnienie: