Penjelasan dengan langkah-langkah:
deret aritmatika
S₆ = 42
Sn = n/2[2a + (n - 1)b]
S₆ = 6/2[2a + (6 - 1)b]
42 = 3[2a + 5b]
42 = 6a + 15b
6a + 15b = 42
2a + 5b = 14 ................ (1)
S₁₀ = 110
S₁₀ = 10/2[2a + (10 - 1)b]
110 = 5[2a + 9b]
110 = 10a + 45b
10a + 45b = 110
2a + 9b = 22 .............. (2)
eliminasi persamaan (2) dan (1)
2a + 9b = 22
2a + 5b = 14
------------------- -
0 + 4b = 8
b = 8/4
b = 2 .............. *
subtitusikan nilai b ke persamaan (1)
2a + 5(2) = 14
2a + 10 = 14
2a = 14 - 10
2a = 4
a = 4/2
a = 2
jumlah delapan suku pertama (S₈)
S₈ = 8/2[2(2) + (8 - 1)2]
S₈ = 4[ 4+ 14]
S₈ = 4 x 18
S₈ = 72
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
deret aritmatika
S₆ = 42
Sn = n/2[2a + (n - 1)b]
S₆ = 6/2[2a + (6 - 1)b]
42 = 3[2a + 5b]
42 = 6a + 15b
6a + 15b = 42
2a + 5b = 14 ................ (1)
S₁₀ = 110
Sn = n/2[2a + (n - 1)b]
S₁₀ = 10/2[2a + (10 - 1)b]
110 = 5[2a + 9b]
110 = 10a + 45b
10a + 45b = 110
2a + 9b = 22 .............. (2)
eliminasi persamaan (2) dan (1)
2a + 9b = 22
2a + 5b = 14
------------------- -
0 + 4b = 8
b = 8/4
b = 2 .............. *
subtitusikan nilai b ke persamaan (1)
2a + 5b = 14
2a + 5(2) = 14
2a + 10 = 14
2a = 14 - 10
2a = 4
a = 4/2
a = 2
jumlah delapan suku pertama (S₈)
Sn = n/2[2a + (n - 1)b]
S₈ = 8/2[2(2) + (8 - 1)2]
S₈ = 4[ 4+ 14]
S₈ = 4 x 18
S₈ = 72