(x - x1)(x - 3)
= (x - (-4)(x - 3)
= (x + 4)(x - 3)
= (x(x) - (3(x) + (4(x) - (4(3)
= x² - 3x + 4x - 12
= x² + (4 - 3)x - 12
= x² + x - 12
maka :
nilai b = 1
nilai c = -12
pembuktian :
x² + x - 12
(x + 4)(x - 3)
x + 4 = 0 V x - 3 = 0
x = 0 - 4 V x = 0 + 3
x = -4 V x = 3
[tex]\boxed { \color{cyan} \mathcal{INFINITE \: WORLD}}[/tex]
Rumus:
x = (-b ± √(b²-4ac)) / 2a
x₁ + x₂ = -b/1 atau b = -1(x₁ + x₂)
x₁x₂ = c/1 atau c = 1(x₁x₂)
x₁x₂ = 3
Nilai c = 1(x₁x₂) = 3 ke dalam persamaan x₁ + x₂ = -b/1 maka:
x₁ + x₂ = -b/1 atau b = -1(x₁ + x₂) (1)
x₁x₂ = 3 c = 3
x₁ + x₂ = -4
Nilai x₁ + x₂ = -4 ke dalam persamaan (1), maka
b = -1(x₁ + x₂) = -1(-4) = 4
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
(x - x1)(x - 3)
= (x - (-4)(x - 3)
= (x + 4)(x - 3)
= (x(x) - (3(x) + (4(x) - (4(3)
= x² - 3x + 4x - 12
= x² + (4 - 3)x - 12
= x² + x - 12
maka :
nilai b = 1
nilai c = -12
pembuktian :
x² + x - 12
(x + 4)(x - 3)
x + 4 = 0 V x - 3 = 0
x = 0 - 4 V x = 0 + 3
x = -4 V x = 3
[tex]\boxed { \color{cyan} \mathcal{INFINITE \: WORLD}}[/tex]
Verified answer
Rumus:
x = (-b ± √(b²-4ac)) / 2a
x₁ + x₂ = -b/1 atau b = -1(x₁ + x₂)
x₁x₂ = c/1 atau c = 1(x₁x₂)
x₁x₂ = 3
Nilai c = 1(x₁x₂) = 3 ke dalam persamaan x₁ + x₂ = -b/1 maka:
x₁ + x₂ = -b/1 atau b = -1(x₁ + x₂) (1)
x₁x₂ = 3 c = 3
x₁ + x₂ = -4
Nilai x₁ + x₂ = -4 ke dalam persamaan (1), maka
b = -1(x₁ + x₂) = -1(-4) = 4
Sehingga nilai b = 4 dan c = 3.