Jawab:
Penjelasan dengan langkah-langkah:
Diketahui:
P = ¹² log 18
Q = ²⁴ log 54
Untuk menghitung P × Q + 5 ( P-Q), kita perlu menghitung P dan Q terlebih dahulu.
= log 18 / log 12
= log (2 * 9) / log 3 * 2^2
= (log 2 + log 9) / (log 3 + 2 log 2)
= (1 + 2 log 3) / (log 3 + 2)
= 3 / (log 3 + 2)
= log 54 / log 24
= log (2 * 27) / log 2^3 * 3
= (log 2 + log 27) / (3 log 2 + log 3)
= (1 + 3 log 3) / (3 + log 3)
= 4 / (3 + log 3)
Sekarang kita dapat menghitung P × Q + 5 ( P-Q) :
P × Q + 5 ( P-Q)
= 3 / (log 3 + 2) * 4 / (3 + log 3) + 5 (3 / (log 3 + 2) - 4 / (3 + log 3))
= 12 / (log 3 + 2)(3 + log 3) + 5 (3(3 + log 3) - 4(log 3 + 2)) / (log 3 + 2)(3 + log 3)
= 12 + 5(9 + 3 log 3 - 4 log 3 - 8) / (log 3 + 2)(3 + log 3)
= 12 + 5(1 + -log 3) / (log 3 + 2)(3 + log 3)
= 12 + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
Untuk menyederhanakan ekspresi di atas, kita dapat menggunakan sifat distributif:
12 + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
= 12 / (log 3 + 2)(3 + log 3) + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
Sekarang kita dapat membagi kedua ruas dengan (log 3 + 2)(3 + log 3):
= (12 + 5(1 - log 3)) / (log 3 + 2)(3 + log 3)
= 12 / 9 + 5(1 - log 3) / 9
= 12/9 + 5 - 5 log 3 / 9
= 4/3 + 5 - 5 log 3 / 3
= 13/3 - 5 log 3 / 3
= (13 - 5 log 3) / 3
Jadi, P × Q + 5 ( P-Q) = (13 - 5 log 3) / 3.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawab:
Penjelasan dengan langkah-langkah:
Diketahui:
P = ¹² log 18
Q = ²⁴ log 54
Untuk menghitung P × Q + 5 ( P-Q), kita perlu menghitung P dan Q terlebih dahulu.
P = ¹² log 18
= log 18 / log 12
= log (2 * 9) / log 3 * 2^2
= (log 2 + log 9) / (log 3 + 2 log 2)
= (1 + 2 log 3) / (log 3 + 2)
= 3 / (log 3 + 2)
Q = ²⁴ log 54
= log 54 / log 24
= log (2 * 27) / log 2^3 * 3
= (log 2 + log 27) / (3 log 2 + log 3)
= (1 + 3 log 3) / (3 + log 3)
= 4 / (3 + log 3)
Sekarang kita dapat menghitung P × Q + 5 ( P-Q) :
P × Q + 5 ( P-Q)
= 3 / (log 3 + 2) * 4 / (3 + log 3) + 5 (3 / (log 3 + 2) - 4 / (3 + log 3))
= 12 / (log 3 + 2)(3 + log 3) + 5 (3(3 + log 3) - 4(log 3 + 2)) / (log 3 + 2)(3 + log 3)
= 12 + 5(9 + 3 log 3 - 4 log 3 - 8) / (log 3 + 2)(3 + log 3)
= 12 + 5(1 + -log 3) / (log 3 + 2)(3 + log 3)
= 12 + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
Untuk menyederhanakan ekspresi di atas, kita dapat menggunakan sifat distributif:
12 + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
= 12 / (log 3 + 2)(3 + log 3) + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
Sekarang kita dapat membagi kedua ruas dengan (log 3 + 2)(3 + log 3):
= (12 + 5(1 - log 3)) / (log 3 + 2)(3 + log 3)
= 12 / (log 3 + 2)(3 + log 3) + 5(1 - log 3) / (log 3 + 2)(3 + log 3)
= 12 / 9 + 5(1 - log 3) / 9
= 12/9 + 5 - 5 log 3 / 9
= 4/3 + 5 - 5 log 3 / 3
= 13/3 - 5 log 3 / 3
= (13 - 5 log 3) / 3
Jadi, P × Q + 5 ( P-Q) = (13 - 5 log 3) / 3.