PEMBAHASAN
Integral
EF = FC
Luas ∆EFC = 1/2 × EF × FC
18 = 1/2 × EF²
EF² = 18 × 2
EF = 6 cm
Puncak parabola → P(0,0)
BF = EF = 6 cm
BP = PF = 6/3 = 3 cm
parabola
P(0,0)
y = ax²
melalui titik E(3,6)
6 = a × 3²
a = 2/3
y = 2/3 x²
garis
melalui P(0,0) dan E(3,6)
y = 6/3 x
y = 2x
cara 1 → nilai diskriminan
y = y
2/3 x² = 2x
2/3 x² - 2x = 0
D = b² - 4ac
D = (-2)² - 4a.0 = 4
Luas daerah K
= D√D / 6a²
= 4√4 / 6(2/3)²
= 3 cm²
cara 2 → integral
= ∫(y1 - y2) dx [0 3]
= ∫(2x - 2/3 x²)
= x² - 2/9 x³
= 3² - 2/9 × 3³ - 0
= 9 - 6
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
PEMBAHASAN
Integral
EF = FC
Luas ∆EFC = 1/2 × EF × FC
18 = 1/2 × EF²
EF² = 18 × 2
EF = 6 cm
Puncak parabola → P(0,0)
BF = EF = 6 cm
BP = PF = 6/3 = 3 cm
parabola
P(0,0)
y = ax²
melalui titik E(3,6)
y = ax²
6 = a × 3²
a = 2/3
y = 2/3 x²
garis
melalui P(0,0) dan E(3,6)
y = 6/3 x
y = 2x
cara 1 → nilai diskriminan
y = y
2/3 x² = 2x
2/3 x² - 2x = 0
D = b² - 4ac
D = (-2)² - 4a.0 = 4
Luas daerah K
= D√D / 6a²
= 4√4 / 6(2/3)²
= 3 cm²
cara 2 → integral
Luas daerah K
= ∫(y1 - y2) dx [0 3]
= ∫(2x - 2/3 x²)
= x² - 2/9 x³
= 3² - 2/9 × 3³ - 0
= 9 - 6
= 3 cm²