Mgs nya dicari dengan turunan implisit
d( x³ + y³ - 9xy) = d(0)
3x²+3y².y' - 9d(xy) = 0 <= untuk turunan xy pakai aturan turunan perkalian 2 fungsi ( d(u.v) = d(u).v + d(v).u )
3x²+3y².y' - 9(1.y+1.y'.x) = 0
x²+y².y' - 3(y+xy') = 0
x² +y²y' - 3y - 3xy' = 0
y'(y²-3x) = 3y - x²
y' = (3y-x²)/(y²-3x)
mgs = (3.4-2²)/(4²-3.2)
mgs = (8)/(10)
mgs = 4/5
persamaan garis singgungnya :
y - 4 = (4/5)(x-2)
y = 4/5 x - 8/5 + 4
5y = 4x - 8 + 20
5y = 4x + 12
5y-4x = 12
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Mgs nya dicari dengan turunan implisit
d( x³ + y³ - 9xy) = d(0)
3x²+3y².y' - 9d(xy) = 0 <= untuk turunan xy pakai aturan turunan perkalian 2 fungsi ( d(u.v) = d(u).v + d(v).u )
3x²+3y².y' - 9(1.y+1.y'.x) = 0
x²+y².y' - 3(y+xy') = 0
x² +y²y' - 3y - 3xy' = 0
y'(y²-3x) = 3y - x²
y' = (3y-x²)/(y²-3x)
mgs = (3.4-2²)/(4²-3.2)
mgs = (8)/(10)
mgs = 4/5
persamaan garis singgungnya :
y - 4 = (4/5)(x-2)
y = 4/5 x - 8/5 + 4
5y = 4x - 8 + 20
5y = 4x + 12
5y-4x = 12