Penjelasan dengan langkah-langkah:
Mohon ijin menjawab ... dan koreksi jika kurang tepat ..
[tex]ob = \sqrt{(fb{)}^{2} +(fo {)}^{2} } \\ = \sqrt{ {4}^{2} +(2 \sqrt{2} {)}^{2} } \\ = \sqrt{16 + 8} \\ = \sqrt{24} \\ = 2 \sqrt{6} [/tex]
[tex] \sin( \beta ) = \frac{fo}{ob} \\ = \frac{2 \sqrt{2} }{2 \sqrt{6} } \\ = \sqrt{ \frac{1}{3} } = \frac{1}{3} \sqrt{3} [/tex]
[tex] \cos( \beta ) = \frac{bf}{bo} \\ = \frac{4}{2 \sqrt{6} } \\ = \frac{2}{ \sqrt{6} } \\ = \frac{1}{3} \sqrt{6} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Mohon ijin menjawab ... dan koreksi jika kurang tepat ..
[tex]ob = \sqrt{(fb{)}^{2} +(fo {)}^{2} } \\ = \sqrt{ {4}^{2} +(2 \sqrt{2} {)}^{2} } \\ = \sqrt{16 + 8} \\ = \sqrt{24} \\ = 2 \sqrt{6} [/tex]
[tex] \sin( \beta ) = \frac{fo}{ob} \\ = \frac{2 \sqrt{2} }{2 \sqrt{6} } \\ = \sqrt{ \frac{1}{3} } = \frac{1}{3} \sqrt{3} [/tex]
[tex] \cos( \beta ) = \frac{bf}{bo} \\ = \frac{4}{2 \sqrt{6} } \\ = \frac{2}{ \sqrt{6} } \\ = \frac{1}{3} \sqrt{6} [/tex]