Jawaban:
[tex]a. \: (fog) (x) = f(g(x)) \\ \: = f( {x}^{2} + 1) \\ = 7( {x}^{2} + 1) + 8 \\ = 7 {x}^{2} + 7 + 8 \\ = 7 {x}^{2} + 15 \\ b.(gof)(x) = g(f(x) \\ = g(7x + 8) \\ = ( {7x + 8})^{2} + 1 \\ = 49 {x}^{2} + 112x + 64 + 1 \\ = 49 {x}^{2} + 112x + 65[/tex]
Dari jawaban di atas, maka dapat disimpulkan bahwa:
(f o g)(x) # (g o f)(x)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
[tex]a. \: (fog) (x) = f(g(x)) \\ \: = f( {x}^{2} + 1) \\ = 7( {x}^{2} + 1) + 8 \\ = 7 {x}^{2} + 7 + 8 \\ = 7 {x}^{2} + 15 \\ b.(gof)(x) = g(f(x) \\ = g(7x + 8) \\ = ( {7x + 8})^{2} + 1 \\ = 49 {x}^{2} + 112x + 64 + 1 \\ = 49 {x}^{2} + 112x + 65[/tex]
Dari jawaban di atas, maka dapat disimpulkan bahwa:
(f o g)(x) # (g o f)(x)