Penjelasan dengan langkah-langkah:
Sebelumnya perlu diketahui bentuk umum fungsi kuadrat adalah
y = ax²+bx+c
berdasarkan fungsi
f(x) = x²-7x+10
a = 1
b = -7
c = 10
a. Sumbu simetris
= - \frac{b}{2a}=−
2a
b
= - \frac{ - 7}{2.1}=−
2.1
−7
= 3.5=3.5
b. nilai optimum
= \frac{ - b^{2} - 4ac}{4a}=
4a
−b
2
−4ac
= \frac{ - 7^{2} - 4 \times 1 \times 10}{4}=
4
−4×1×10
= \frac{49 - 40}{4}=
49−40
= 2 \frac{1}{4}=2
1
c. titik potong sumbu x
f(0) = 0²-7(0) + 10
f(0) = 10
titik potong = (0,10)
d. titip potong sumbu y
0 = x²-7+10
0 = (x-2)(x-5)
x = 2 dan x = 5
titik potong sumbu y = (2,0) dan (5,0)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
Sebelumnya perlu diketahui bentuk umum fungsi kuadrat adalah
y = ax²+bx+c
berdasarkan fungsi
f(x) = x²-7x+10
a = 1
b = -7
c = 10
a. Sumbu simetris
= - \frac{b}{2a}=−
2a
b
= - \frac{ - 7}{2.1}=−
2.1
−7
= 3.5=3.5
b. nilai optimum
= \frac{ - b^{2} - 4ac}{4a}=
4a
−b
2
−4ac
= \frac{ - 7^{2} - 4 \times 1 \times 10}{4}=
4
−7
2
−4×1×10
= \frac{49 - 40}{4}=
4
49−40
= 2 \frac{1}{4}=2
4
1
c. titik potong sumbu x
f(0) = 0²-7(0) + 10
f(0) = 10
titik potong = (0,10)
d. titip potong sumbu y
0 = x²-7+10
0 = (x-2)(x-5)
x = 2 dan x = 5
titik potong sumbu y = (2,0) dan (5,0)