Penjelasan:
komposisi fungsi
Jika; (fog)(x) → f{ g(x) } dan jika; (gof)(x) → g{ f(x) }
Jika turunan fungsi; f(x) = pxⁿ → f'(x) = n . pxⁿ-¹
maka:
f(x) = 4x² + 5x + 1 dan g(x) = 2x
(fog)(x) = f{ g(x) } = 4(2x)² + 5(2x) + 1 = 4(4x²) + 10x + 1 = 16x² + 10x + 1
(fog)'(x) = 2 . 16x²-¹ + 10x¹-¹ + 0 = 32x + 10
Jadi, turunan pertama dari (fog)(x) adalah 32x + 10 (C).
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan:
komposisi fungsi
Jika; (fog)(x) → f{ g(x) } dan jika; (gof)(x) → g{ f(x) }
Jika turunan fungsi; f(x) = pxⁿ → f'(x) = n . pxⁿ-¹
maka:
f(x) = 4x² + 5x + 1 dan g(x) = 2x
(fog)(x) = f{ g(x) } = 4(2x)² + 5(2x) + 1 = 4(4x²) + 10x + 1 = 16x² + 10x + 1
(fog)'(x) = 2 . 16x²-¹ + 10x¹-¹ + 0 = 32x + 10
Jadi, turunan pertama dari (fog)(x) adalah 32x + 10 (C).