Jadi, nilai dari g(-1) adalah
Diketahui fungsi f(x) = 2x – 3 dan (f o g)(x) = 2x² + 4x + 1.Nilai g(–1) adalah 1.
Penjelasan dengan langkah-langkah
Fungsi Komposisi
Cara 1Tentukan g(x) dan substitusi.
[tex]\begin{aligned}(f\circ g)(x)&=2x^2+4x+1\\2g(x)-3&=2x^2+4x+1\\2g(x)&=2x^2+4x+1+3\\&=2x^2+4x+4\\2g(x)&=2\left(x^2+2x+2\right)\\\implies g(x)&=x^2+2x+2\\\end{aligned}[/tex]
Maka:g(–1) = (–1)² + 2(–1) + 2⇔ g(–1) = 1 – 2 + 2∴ g(–1) = 1________
Cara 2
[tex]\begin{aligned}g(x)&=\left(\left(f^{-1}\circ f\right)\circ g\right)(x)\\&=\left(f^{-1}\circ\left(f\circ g\right)\right)(x)\\g(x)&=f^{-1}\left(\left(f\circ g\right)(x)\right)\end{aligned}[/tex]
Karena f(x) = 2x – 3, maka inversnya adalah:
[tex]\begin{aligned}f^{-1}(x)=\frac{x+3}{2}\end{aligned}[/tex]
Kita hitung (f o g)(–1).(f o g)(–1) = 2·(–1)² + 4(–1) + 1⇔ (f o g)(–1) = 2 – 4 + 1⇔ (f o g)(–1) = –1
Maka:
[tex]\begin{aligned}g(-1)&=f^{-1}\left(\left(f\circ g\right)(-1)\right)\\&=f^{-1}(-1)\\&=\frac{-1+3}{2}=\frac{2}{2}\\\therefore\ g(-1)&=\bf1\end{aligned}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jadi, nilai dari g(-1) adalah
Diketahui fungsi f(x) = 2x – 3 dan (f o g)(x) = 2x² + 4x + 1.
Nilai g(–1) adalah 1.
Penjelasan dengan langkah-langkah
Fungsi Komposisi
Cara 1
Tentukan g(x) dan substitusi.
[tex]\begin{aligned}(f\circ g)(x)&=2x^2+4x+1\\2g(x)-3&=2x^2+4x+1\\2g(x)&=2x^2+4x+1+3\\&=2x^2+4x+4\\2g(x)&=2\left(x^2+2x+2\right)\\\implies g(x)&=x^2+2x+2\\\end{aligned}[/tex]
Maka:
g(–1) = (–1)² + 2(–1) + 2
⇔ g(–1) = 1 – 2 + 2
∴ g(–1) = 1
________
Cara 2
[tex]\begin{aligned}g(x)&=\left(\left(f^{-1}\circ f\right)\circ g\right)(x)\\&=\left(f^{-1}\circ\left(f\circ g\right)\right)(x)\\g(x)&=f^{-1}\left(\left(f\circ g\right)(x)\right)\end{aligned}[/tex]
Karena f(x) = 2x – 3, maka inversnya adalah:
[tex]\begin{aligned}f^{-1}(x)=\frac{x+3}{2}\end{aligned}[/tex]
Kita hitung (f o g)(–1).
(f o g)(–1) = 2·(–1)² + 4(–1) + 1
⇔ (f o g)(–1) = 2 – 4 + 1
⇔ (f o g)(–1) = –1
Maka:
[tex]\begin{aligned}g(-1)&=f^{-1}\left(\left(f\circ g\right)(-1)\right)\\&=f^{-1}(-1)\\&=\frac{-1+3}{2}=\frac{2}{2}\\\therefore\ g(-1)&=\bf1\end{aligned}[/tex]