Penjelasan dengan langkah-langkah:
turunan fungsi
[tex]f(x) = am {}^{q} \to \: f'(x) = q \: . \: am {}^{q - 1} \\ [/tex]
[tex]f(x) = 5 {x}^{3} - 6 {x}^{2} + x - 9 \\ f'(x) = 3.5 {x}^{3 - 1} - 2.6 {x}^{2 - 1} + {x}^{1 - 1} - 0 \\ f'(x) = 15 {x}^{2} - 12 {x}^{1} + {x}^{0} \\ f'(x) = 15 {x}^{2} - 12x + 1[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Penjelasan dengan langkah-langkah:
turunan fungsi
[tex]f(x) = am {}^{q} \to \: f'(x) = q \: . \: am {}^{q - 1} \\ [/tex]
[tex]f(x) = 5 {x}^{3} - 6 {x}^{2} + x - 9 \\ f'(x) = 3.5 {x}^{3 - 1} - 2.6 {x}^{2 - 1} + {x}^{1 - 1} - 0 \\ f'(x) = 15 {x}^{2} - 12 {x}^{1} + {x}^{0} \\ f'(x) = 15 {x}^{2} - 12x + 1[/tex]