komposisi fungsi
invers fungsi
f(x) = y → f⁻¹ (y) = x
a.
f(x) = 2x + 5
g(x) = x - 2
(fog)(x)
= f(g(x))
= f(x - 2)
= 2(x - 2) + 5
= 2x + 1
(fog)(x) = 2x + 1
b.
f(x) = y = 2x + 5
2x = y - 5
x = f⁻¹ (y) = (y - 5)/2
f⁻¹ (x) = (x - 5)/2
Penjelasan dengan langkah-langkah:
f(g)(x))
F(x - 2)
2(x - 2) + 5
2x - 4 + 5
2x + 1
b. f-¹(x)
(x - 5)/2
semoga bermanfaat
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
komposisi fungsi
invers fungsi
f(x) = y → f⁻¹ (y) = x
a.
f(x) = 2x + 5
g(x) = x - 2
(fog)(x)
= f(g(x))
= f(x - 2)
= 2(x - 2) + 5
= 2x + 1
(fog)(x) = 2x + 1
b.
f(x) = y = 2x + 5
2x = y - 5
x = f⁻¹ (y) = (y - 5)/2
f⁻¹ (x) = (x - 5)/2
Penjelasan dengan langkah-langkah:
a.
(fog)(x)
f(g)(x))
F(x - 2)
2(x - 2) + 5
2x - 4 + 5
2x + 1
b. f-¹(x)
(x - 5)/2
semoga bermanfaat