بِسْـــــــمِ اللّٰهِ الرَّحْمٰنِ الرَّحِيْمِ
..
Jawaban:
a. 18y²
b. [tex]2{b}^{4}{y}^{9}[/tex]
c. [tex]3{m}^{7}{n}^{4}[/tex]
d. [tex]4{t}^{7}{n}^{12}[/tex]
e. [tex]90{x}^{9}{y}^{10}[/tex]
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned} a. ~ & \: {y}^{3} \times {2y}^{7} \times {(3y)}^{2}\\&= {y}^{3} \times {2y}^{7} \times {9y}^{2} \\&=(2 \times 9) \times ( {y}^{3 + 7 + 2} ) \\ &=18 \times {y}^{12} \\&=18 {y}^{2} \end{aligned}[/tex]
[tex]\begin{aligned}b. ~ &~b \times {2y}^{7} \times {b}^{3} \times {y}^{2} \\ &= (b \times {b}^{3}) \times (2 {y}^{7} \times {y}^{2}) \\&= {b}^{1 + 3} \times {2y}^{7 + 2} \\&= {b}^{4} \times {2y}^{9} \\&=2 {b}^{4} {y}^{9} \end{aligned}[/tex]
[tex]\begin{aligned}c. ~ &~ {3m}^{3} \times {(mn)}^{4} \\ & = {3m}^{3} \times {m}^{4} {n}^{4} \\& =3 \times {m}^{3 + 4} \times {n}^{4} \\& =3 {m}^{7} {n}^{4} \end{aligned}[/tex]
[tex]\begin{aligned}d. ~ &~ {(t {n}^{3} )}^{4} \times {4t}^{3} \\ &= {t}^{4} \times {n}^{3 \times 4} \times 4 {t}^{3} \\ & = 4( {t}^{4 + 3}) \times {n}^{12} \\ & = {4t}^{7} {n}^{12} \end{aligned}[/tex]
[tex]\begin{aligned}e. ~ &~ {(2x}^{3}) \times 3 {( {x}^{2} {y}^{2} )}^{3} \times {5y}^{4} \\&= {(2x}^{3}) \times 3( {x}^{6} {y}^{6}) \times {5y}^{4} \\& = {2x}^{3}\times {3x}^{6} \times {3y}^{6} \times {5y}^{4} \\& = (2 \times 3 \times 3 \times 5) \times ( {x}^{3 + 6}) \times ( {y}^{6 + 4}) \\& = 90 \times {x}^{9} \times {y}^{10} \\& = 90 {x}^{9} {y}^{10} \end{aligned}[/tex]
وَاللّٰهُ اَعْلَمُ بِاالصَّوَافَ
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
بِسْـــــــمِ اللّٰهِ الرَّحْمٰنِ الرَّحِيْمِ
..
Jawaban:
a. 18y²
b. [tex]2{b}^{4}{y}^{9}[/tex]
c. [tex]3{m}^{7}{n}^{4}[/tex]
d. [tex]4{t}^{7}{n}^{12}[/tex]
e. [tex]90{x}^{9}{y}^{10}[/tex]
Penjelasan dengan langkah-langkah:
[tex]\begin{aligned} a. ~ & \: {y}^{3} \times {2y}^{7} \times {(3y)}^{2}\\&= {y}^{3} \times {2y}^{7} \times {9y}^{2} \\&=(2 \times 9) \times ( {y}^{3 + 7 + 2} ) \\ &=18 \times {y}^{12} \\&=18 {y}^{2} \end{aligned}[/tex]
[tex]\begin{aligned}b. ~ &~b \times {2y}^{7} \times {b}^{3} \times {y}^{2} \\ &= (b \times {b}^{3}) \times (2 {y}^{7} \times {y}^{2}) \\&= {b}^{1 + 3} \times {2y}^{7 + 2} \\&= {b}^{4} \times {2y}^{9} \\&=2 {b}^{4} {y}^{9} \end{aligned}[/tex]
[tex]\begin{aligned}c. ~ &~ {3m}^{3} \times {(mn)}^{4} \\ & = {3m}^{3} \times {m}^{4} {n}^{4} \\& =3 \times {m}^{3 + 4} \times {n}^{4} \\& =3 {m}^{7} {n}^{4} \end{aligned}[/tex]
[tex]\begin{aligned}d. ~ &~ {(t {n}^{3} )}^{4} \times {4t}^{3} \\ &= {t}^{4} \times {n}^{3 \times 4} \times 4 {t}^{3} \\ & = 4( {t}^{4 + 3}) \times {n}^{12} \\ & = {4t}^{7} {n}^{12} \end{aligned}[/tex]
[tex]\begin{aligned}e. ~ &~ {(2x}^{3}) \times 3 {( {x}^{2} {y}^{2} )}^{3} \times {5y}^{4} \\&= {(2x}^{3}) \times 3( {x}^{6} {y}^{6}) \times {5y}^{4} \\& = {2x}^{3}\times {3x}^{6} \times {3y}^{6} \times {5y}^{4} \\& = (2 \times 3 \times 3 \times 5) \times ( {x}^{3 + 6}) \times ( {y}^{6 + 4}) \\& = 90 \times {x}^{9} \times {y}^{10} \\& = 90 {x}^{9} {y}^{10} \end{aligned}[/tex]
..
وَاللّٰهُ اَعْلَمُ بِاالصَّوَافَ