" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Jawabgrafik
y = - x + 1
x = 0 , y = 1 → A(0,1)
y = 0, x = 1→ B(1,0)
hubungkan A dan B , sebagai garis y = -x + 1
y = x² - 5x + 4
x =0 → y = 4 → C(0,4)
y = 0 → (x² -5x +4)= 0
(x -4)(x -1)= 0
x = 4 atau x = 1 → D (4,0), E (1,0)
titik puncak x = -b/2a = 5/2
y = (5/2)² - 5(5/2) + 4 = -9/4
P(x,y) = (5/2, -9/4)
hubungkan C, D, P , E
titik potong kedua kurva
y = - x + 1
y = x² -5x + 4
x² -5x + 4 = -x + 1
x² - 5x + x +4 -1 = 0
x² - 4x + 3 = 0
(x - 3)(x -1)= 0
x = 3 atau x = 1
y = -x + 1
x = 3 → y = -3 + 1 = - 2 , G(x,y) = (3, -2)
x = 1 → y = - 1 + 1 = 0 , F(x,y) = (1, 0)
titk potong di (3,-2) dan di (1,0)
Verified answer
Parabola dan Garis•• Garis
y = -x + 1
tiktong
dg sb x --> y = 0 ---> A(1,0)
dg sb y --> x = 0 ---> B(0,1)
Hubungkan A dan B ---> y = -x + 1 ✔
•• Parabola
y = x² - 5x + 4
tiktong
dg sb x ---> y = 0
(x - 1)(x - 4) = 0
C(1,0) dan D(4,0)
dg sb y ---> x = 0 ---> E(0,4)
Puncak parabola
y' = 0
2x - 5 = 0
x = 5/2
y = (5/2)² - 5.5/2 + 4
y = (5/2,-9/4)
P(5/2 , -9/4)
TIKTONG GARIS - PARABOLA
y = y
-x + 1 = x² - 5x + 4
x² - 4x + 3 = 0
(x - 1)(x - 3) = 0
x = 1 --> y = -x + 1 = 0 ---> F(1,0) = C(1,0) = A(1,0)
x = 3 --> y = -3 + 1 = -2 ---> G(3,-2)
Hubungkan E - A - P - G - D membentuk parabola
>> Selesai <<