La magnitud del vector resultante de los vectores que se encuentran en la figura es de 3 u, es decir, opción e.
Descomponemos el vector A, tal que:
Ax = 2·Cos(60º) = +1
Ay = 2·Sen(60º) = +√3
Sumamos algebraicamente los vectores en sus ejes, tal que:
R = Ax + Ay - Cy + Bx - Dx
R = +1 +√3 -√3 + 3 - 1
Rx = 3 u
Entonces, la magnitud del vector resultante de los vectores que se encuentran en la figura es de 3 u, es decir, opción e.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
La magnitud del vector resultante de los vectores que se encuentran en la figura es de 3 u, es decir, opción e.
Explicación:
Descomponemos el vector A, tal que:
Ax = 2·Cos(60º) = +1
Ay = 2·Sen(60º) = +√3
Sumamos algebraicamente los vectores en sus ejes, tal que:
R = Ax + Ay - Cy + Bx - Dx
R = +1 +√3 -√3 + 3 - 1
Rx = 3 u
Entonces, la magnitud del vector resultante de los vectores que se encuentran en la figura es de 3 u, es decir, opción e.