Respuesta:
V = 3π√3/4 cm³
Explicación paso a paso:
Seja d a diagonal da base e a o lado.
d² = a² + a²
d² = 2a²
d = a√2
Seja D a diagonal do cubo.
D² = d² + a²
3² = 2a² + a²
3a² = 9
a² = 3
a = √3 cm
h = a = 3cm
r = √3/2
V = πr²h/3
V = π(√3/2)².√3 / 3
V = 9π/4 .√3/3
Datos:
[tex]Diagonal:D=3cm[/tex]
[tex]Arista: a = ?[/tex]
Radio de la base del cono: [tex]r = ?[/tex]
Altura del cono: [tex]h = a = ?[/tex]
[tex]Volumen: V = ?[/tex]
Fórmula(s):
[tex]D = a\sqrt{3}[/tex]
[tex]3cm = a\sqrt{3},entonces: a = \frac{3}{\sqrt{3} } cm[/tex]
[tex]r = \frac{a}{2} = \frac{\frac{3}{\sqrt{3} cm} }{2} = \frac{3}{2\sqrt{3} }cm[/tex]
[tex]h = a = \frac{3}{\sqrt{3} } cm[/tex]
[tex]V = \frac{\pi r^{2} h}{3}[/tex]
[tex]V = \frac{\pi *(\frac{3}{2\sqrt{3} }cm)^{2} *(\frac{3}{\sqrt{3} } cm) }{3} = \frac{\pi *(\frac{9}{(4)(3)}cm^{2} )*(\frac{3}{\sqrt{3} }cm) }{3} =\frac{9\pi }{12\sqrt{3} } cm^{3}=\frac{3\pi }{4\sqrt{3} } cm^{3}[/tex]
[tex]V = \frac{3(3.14)}{4(1.73)} cm^{3} = \frac{9.42}{6.92} cm^{3}[/tex]
[tex]V = 1.36cm^{3}[/tex]
RESPUESTA:
[tex]1.36cm^{3}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
V = 3π√3/4 cm³
Explicación paso a paso:
Seja d a diagonal da base e a o lado.
d² = a² + a²
d² = 2a²
d = a√2
Seja D a diagonal do cubo.
D² = d² + a²
3² = 2a² + a²
3a² = 9
a² = 3
a = √3 cm
h = a = 3cm
r = √3/2
V = πr²h/3
V = π(√3/2)².√3 / 3
V = 9π/4 .√3/3
V = 3π√3/4 cm³
Respuesta:
Explicación paso a paso:
Datos:
[tex]Diagonal:D=3cm[/tex]
[tex]Arista: a = ?[/tex]
Radio de la base del cono: [tex]r = ?[/tex]
Altura del cono: [tex]h = a = ?[/tex]
[tex]Volumen: V = ?[/tex]
Fórmula(s):
[tex]D = a\sqrt{3}[/tex]
[tex]3cm = a\sqrt{3},entonces: a = \frac{3}{\sqrt{3} } cm[/tex]
[tex]r = \frac{a}{2} = \frac{\frac{3}{\sqrt{3} cm} }{2} = \frac{3}{2\sqrt{3} }cm[/tex]
[tex]h = a = \frac{3}{\sqrt{3} } cm[/tex]
[tex]V = \frac{\pi r^{2} h}{3}[/tex]
[tex]V = \frac{\pi *(\frac{3}{2\sqrt{3} }cm)^{2} *(\frac{3}{\sqrt{3} } cm) }{3} = \frac{\pi *(\frac{9}{(4)(3)}cm^{2} )*(\frac{3}{\sqrt{3} }cm) }{3} =\frac{9\pi }{12\sqrt{3} } cm^{3}=\frac{3\pi }{4\sqrt{3} } cm^{3}[/tex]
[tex]V = \frac{3(3.14)}{4(1.73)} cm^{3} = \frac{9.42}{6.92} cm^{3}[/tex]
[tex]V = 1.36cm^{3}[/tex]
RESPUESTA:
[tex]1.36cm^{3}[/tex]