Se sabe que M=(1,5) y N = (-1,2) por tanto:
[tex]\overline{MN} = \sqrt{(N_x - M_x )^2 + (N_y-M_y)^2}[/tex]
[tex]\overline{MN} = \sqrt{(-1 -1 )^2 + (2-5)^2}[/tex]
[tex]\overline{MN} = \sqrt{(-2 )^2 + (-3)^2}[/tex]
[tex]\overline{MN} = \sqrt{4 + 9}[/tex]
[tex]\overline{MN} = \sqrt{13}[/tex]
\overline{MN} = \sqrt{(N_x - M_x )^2 + (N_y-M_y)^2}
MN
=
(N
x
−M
)
2
+(N
y
\overline{MN} = \sqrt{(-1 -1 )^2 + (2-5)^2}
(−1−1)
+(2−5)
\overline{MN} = \sqrt{(-2 )^2 + (-3)^2}
(−2)
+(−3)
\overline{MN} = \sqrt{4 + 9}
4+9
\overline{MN} = \sqrt{13}
13
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Se sabe que M=(1,5) y N = (-1,2) por tanto:
[tex]\overline{MN} = \sqrt{(N_x - M_x )^2 + (N_y-M_y)^2}[/tex]
[tex]\overline{MN} = \sqrt{(-1 -1 )^2 + (2-5)^2}[/tex]
[tex]\overline{MN} = \sqrt{(-2 )^2 + (-3)^2}[/tex]
[tex]\overline{MN} = \sqrt{4 + 9}[/tex]
[tex]\overline{MN} = \sqrt{13}[/tex]
Se sabe que M=(1,5) y N = (-1,2) por tanto:
\overline{MN} = \sqrt{(N_x - M_x )^2 + (N_y-M_y)^2}
MN
=
(N
x
−M
x
)
2
+(N
y
−M
y
)
2
\overline{MN} = \sqrt{(-1 -1 )^2 + (2-5)^2}
MN
=
(−1−1)
2
+(2−5)
2
\overline{MN} = \sqrt{(-2 )^2 + (-3)^2}
MN
=
(−2)
2
+(−3)
2
\overline{MN} = \sqrt{4 + 9}
MN
=
4+9
\overline{MN} = \sqrt{13}
MN
=
13