Odpowiedź:
Niech I ∡ B I = β = 60° , I ∡ A I = α = 30°
I ∡ C I = 90°
a = I B C I
wtedy
c = I AB I = 2 a
b² = c² - a² = 4 a² - a² = 3 a²
b = I AC I = √3 a
--------------------------
R = 0,5 c = 0,5*2 a = a
r = 0,5 ( a + b - c) = 0,5*( a + √3 a - 2 a) = 0,5*( 1 + √3 - 2) a = 0,5*(√3 - 1) a
więc
[tex]\frac{R}{r} = \frac{a}{0,5*(\sqrt{3} - 1)*a} = \frac{2}{\sqrt{3} - 1}[/tex]
========================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Niech I ∡ B I = β = 60° , I ∡ A I = α = 30°
I ∡ C I = 90°
a = I B C I
wtedy
c = I AB I = 2 a
b² = c² - a² = 4 a² - a² = 3 a²
b = I AC I = √3 a
--------------------------
R = 0,5 c = 0,5*2 a = a
r = 0,5 ( a + b - c) = 0,5*( a + √3 a - 2 a) = 0,5*( 1 + √3 - 2) a = 0,5*(√3 - 1) a
więc
[tex]\frac{R}{r} = \frac{a}{0,5*(\sqrt{3} - 1)*a} = \frac{2}{\sqrt{3} - 1}[/tex]
========================
Szczegółowe wyjaśnienie: