Odpowiedź:
c = I AB I = 10 cm
b = I AC I = 8 cm
a = I BC I = 2[tex]\sqrt{21}[/tex]
więc p = ( 10 + 8 + 2[tex]\sqrt{21} ) : 2 = 9 + \sqrt{21}[/tex]
p - a = 9 - [tex]\sqrt{21}[/tex]
p - b = 1 + [tex]\sqrt{21}[/tex] = [tex]\sqrt{21} + 1[/tex]
p - c = [tex]\sqrt{21} - 1[/tex]
Obliczmy pole Δ z wzoru Herona
P = [tex]\sqrt{( 9 + \sqrt{21} )*( 9 - \sqrt{21})*(\sqrt{21} -1)*(\sqrt{21} + 1) } =[/tex]
= [tex]\sqrt{(81 - 21)*( 21 - 1 )} = \sqrt{60*20} = \sqrt{1200} = \sqrt{400*3} = 20\sqrt{3}[/tex]
oraz
P = 0,5 c*h = 0,5*10*h = 5 h = 20[tex]\sqrt{3}[/tex] / : 5
h = 4[tex]\sqrt{3}[/tex]
====================================
a ) Z tw. Pitagorasa
h² + ( 5 + x)² = ( 2√21)² = 84
h² + ( 5 - x )² = 8² = 64
--------- odejmujemy stronami
( 5 + x )² - ( 5 - x )² = 20
25 + 10 x + x² - ( 25 - 10 x + x² ) = 20
20 x = 20
x = 1
więc
h² + 4² = 8² ⇒ h² = 64 - 16 = 48 = 16*3
h = 4√3
s² = x² + h² = 1² + 48 = 49
s = [tex]\sqrt{49} = 7[/tex]
Odp. s = 7 cm
===============
b ) Pole Δ ADC
Pt = 0,5*I AD I*h = 0,5*5*4√3 = 10√3
Odp. 10 √3 cm²
===================
Nie było potrzeby obliczania pola Δ ABC z wzoru Herona - ale niech
zostanie.
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
c = I AB I = 10 cm
b = I AC I = 8 cm
a = I BC I = 2[tex]\sqrt{21}[/tex]
więc p = ( 10 + 8 + 2[tex]\sqrt{21} ) : 2 = 9 + \sqrt{21}[/tex]
p - a = 9 - [tex]\sqrt{21}[/tex]
p - b = 1 + [tex]\sqrt{21}[/tex] = [tex]\sqrt{21} + 1[/tex]
p - c = [tex]\sqrt{21} - 1[/tex]
Obliczmy pole Δ z wzoru Herona
P = [tex]\sqrt{( 9 + \sqrt{21} )*( 9 - \sqrt{21})*(\sqrt{21} -1)*(\sqrt{21} + 1) } =[/tex]
= [tex]\sqrt{(81 - 21)*( 21 - 1 )} = \sqrt{60*20} = \sqrt{1200} = \sqrt{400*3} = 20\sqrt{3}[/tex]
oraz
P = 0,5 c*h = 0,5*10*h = 5 h = 20[tex]\sqrt{3}[/tex] / : 5
h = 4[tex]\sqrt{3}[/tex]
====================================
a ) Z tw. Pitagorasa
h² + ( 5 + x)² = ( 2√21)² = 84
h² + ( 5 - x )² = 8² = 64
--------- odejmujemy stronami
( 5 + x )² - ( 5 - x )² = 20
25 + 10 x + x² - ( 25 - 10 x + x² ) = 20
20 x = 20
x = 1
więc
h² + 4² = 8² ⇒ h² = 64 - 16 = 48 = 16*3
h = 4√3
s² = x² + h² = 1² + 48 = 49
s = [tex]\sqrt{49} = 7[/tex]
Odp. s = 7 cm
===============
b ) Pole Δ ADC
Pt = 0,5*I AD I*h = 0,5*5*4√3 = 10√3
Odp. 10 √3 cm²
===================
Nie było potrzeby obliczania pola Δ ABC z wzoru Herona - ale niech
zostanie.
Szczegółowe wyjaśnienie: