[tex]\displaystyle\\\binom{n+2}{2}+\binom{n+1}{2}=\dfrac{(n+2)!}{2!\cdot n!}+\dfrac{(n+1)!}{2!\cddot (n-1)!}=\dfrac{(n+1)(n+2)}{2}+\dfrac{n(n+1)}{2}=\\=\dfrac{(n+1)(n+2)+n(n+1)}{2}=\dfrac{(n+1)(n+2+n)}{2}=\dfrac{(n+1)(2n+2)}{2}=\\=\dfrac{2(n+1)(n+1)}{2}=(n+1)^2[/tex]
Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]a={n+2 \choose 2}+{n+1 \choose 2}=\frac{(n+2)!}{2!(n+2-2)!} +\frac{(n+1)!}{2!(n+1-2)!}=\frac{(n+2)!}{2*n!} +\frac{(n+1)!}{2(n-1)!} =\\[/tex]
[tex]=\frac{n!(n+1)(n+2)}{2n!} +\frac{(n-1)!*n(n+1)}{2(n-1)!} =\frac{(n+1)(n+2)}{2} +\frac{n(n+1)}{2} =[/tex]
[tex]=\frac{n^2+2n+n+2+n^2+n}{2} =\frac{2n^2+4n+2}{2} =n^2+2n+1=(n+1)^2[/tex]
c.n.u
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]\displaystyle\\\binom{n+2}{2}+\binom{n+1}{2}=\dfrac{(n+2)!}{2!\cdot n!}+\dfrac{(n+1)!}{2!\cddot (n-1)!}=\dfrac{(n+1)(n+2)}{2}+\dfrac{n(n+1)}{2}=\\=\dfrac{(n+1)(n+2)+n(n+1)}{2}=\dfrac{(n+1)(n+2+n)}{2}=\dfrac{(n+1)(2n+2)}{2}=\\=\dfrac{2(n+1)(n+1)}{2}=(n+1)^2[/tex]
Odpowiedź:
Szczegółowe wyjaśnienie:
[tex]a={n+2 \choose 2}+{n+1 \choose 2}=\frac{(n+2)!}{2!(n+2-2)!} +\frac{(n+1)!}{2!(n+1-2)!}=\frac{(n+2)!}{2*n!} +\frac{(n+1)!}{2(n-1)!} =\\[/tex]
[tex]=\frac{n!(n+1)(n+2)}{2n!} +\frac{(n-1)!*n(n+1)}{2(n-1)!} =\frac{(n+1)(n+2)}{2} +\frac{n(n+1)}{2} =[/tex]
[tex]=\frac{n^2+2n+n+2+n^2+n}{2} =\frac{2n^2+4n+2}{2} =n^2+2n+1=(n+1)^2[/tex]
c.n.u