Odpowiedź:
w( x ) = [tex]x^4 -2 x^3 +a x^2 + b x + c[/tex]
w(x ) = ( x - a)*(x + 1)³ = ( x - a)*(x³ + 3 x² + 3 x + 1 ) =
= [tex]x^4 + 3 x^3 + 3 x^2 +x - a x^3 - 3a x^2 - 3a x - a =[/tex]
= [tex]x^4 + ( 3 - a) x^3 + ( 3 - 3 a) x^2 + ( 1 - 3 a) x - a[/tex]
więc
3 - a = - 2 ⇒ a = 5
Mamy zatem
w(x) = [tex]x^4 - 2 x^3[/tex] - 12 [tex]x^2[/tex] - 14 x - 5
Odp. a = - 12 b = - 14 c = - 5
================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
w( x ) = [tex]x^4 -2 x^3 +a x^2 + b x + c[/tex]
w(x ) = ( x - a)*(x + 1)³ = ( x - a)*(x³ + 3 x² + 3 x + 1 ) =
= [tex]x^4 + 3 x^3 + 3 x^2 +x - a x^3 - 3a x^2 - 3a x - a =[/tex]
= [tex]x^4 + ( 3 - a) x^3 + ( 3 - 3 a) x^2 + ( 1 - 3 a) x - a[/tex]
więc
3 - a = - 2 ⇒ a = 5
Mamy zatem
w(x) = [tex]x^4 - 2 x^3[/tex] - 12 [tex]x^2[/tex] - 14 x - 5
Odp. a = - 12 b = - 14 c = - 5
================================
Szczegółowe wyjaśnienie: