Odpowiedź:
I AD I = 2 x I CD I = 3 x
2 x + 3 x = 5 x = 20 / : 5
x = 4
więc
I AD I = 2*4 = 8 I CD I = 3*4 = 12
P[tex]_{ABC} = 0,5*20*h = 10 h[/tex]
P[tex]_{ABD} = 0,5*8*h = 4 h[/tex]
zatem [tex]P_{ABC} : P_{ABD} =[/tex] [tex]\frac{10 h}{4 h} = \frac{5}{2} = 2,5[/tex]
====================================
h - wysokość ΔABC
h = 20*[tex]\frac{\sqrt{3} }{2} = 10\sqrt{3}[/tex]
x = 10 - 8 = 2
I BD I² = h² + x² = ( 10√3)² + 2² = 100*3 + 4 = 304
I BD I = [tex]\sqrt{304}[/tex] = [tex]\sqrt{16*19} = 4\sqrt{19}[/tex]
==============================
Z tw. kosinusów
8² = 20² + ( 4[tex]\sqrt{19}[/tex] )² - 2*20*4[tex]\sqrt{19}[/tex]*cos α
64 = 400 + 304 - 160[tex]\sqrt{19}[/tex]*cos α
160[tex]\sqrt{19}[/tex] cos α = 704 - 64 = 640 / : ( 160[tex]\sqrt{19}[/tex] )
cos α = [tex]\frac{4}{\sqrt{19} } = \frac{4\sqrt{19} }{19}[/tex]
==================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
I AD I = 2 x I CD I = 3 x
2 x + 3 x = 5 x = 20 / : 5
x = 4
więc
I AD I = 2*4 = 8 I CD I = 3*4 = 12
P[tex]_{ABC} = 0,5*20*h = 10 h[/tex]
P[tex]_{ABD} = 0,5*8*h = 4 h[/tex]
zatem [tex]P_{ABC} : P_{ABD} =[/tex] [tex]\frac{10 h}{4 h} = \frac{5}{2} = 2,5[/tex]
====================================
h - wysokość ΔABC
h = 20*[tex]\frac{\sqrt{3} }{2} = 10\sqrt{3}[/tex]
x = 10 - 8 = 2
I BD I² = h² + x² = ( 10√3)² + 2² = 100*3 + 4 = 304
I BD I = [tex]\sqrt{304}[/tex] = [tex]\sqrt{16*19} = 4\sqrt{19}[/tex]
==============================
Z tw. kosinusów
8² = 20² + ( 4[tex]\sqrt{19}[/tex] )² - 2*20*4[tex]\sqrt{19}[/tex]*cos α
64 = 400 + 304 - 160[tex]\sqrt{19}[/tex]*cos α
160[tex]\sqrt{19}[/tex] cos α = 704 - 64 = 640 / : ( 160[tex]\sqrt{19}[/tex] )
cos α = [tex]\frac{4}{\sqrt{19} } = \frac{4\sqrt{19} }{19}[/tex]
==================
Szczegółowe wyjaśnienie: