Pole trójkąta równobocznego obliczamy korzystając ze wzoru
[tex]P=\frac{a^2\sqrt{3}}{4}\\\\gdzie\\\\a\ \ - dlugo\'s\'c\ \ boku\ \ tr\'ojkata\\\\\\a)\ \ 8cm\\\\P=\frac{8^2\sqrt{3}}{4}=\frac{\not64^1^6\sqrt{3}}{\not4_{1}}=16\sqrt{3}\ \ cm^2\\\\\\b)\ \ 10cm\\\\P=\frac{10^2\sqrt{3}}{4}=\frac{\not100^2^5\sqrt{3}}{\not4_{1}}=25\sqrt{3}\ \ cm^2\\\\\\c)\ \ 2\sqrt{3}cm\\\\P=\frac{(2\sqrt{3})^2\cdot\sqrt{3}}{4}=\frac{2^2\cdot(\sqrt{3})^2\cdot\sqrt{3}}{4}=\frac{4\cdot3\sqrt{3}}{4}=\frac{\not12^3\sqrt{3}}{\not4_{1}}=3\sqrt{3}\ \ cm^2[/tex]
[tex]d)\ \ 5\sqrt{2}cm\\\\P=\frac{(5\sqrt{2})^2\cdot\sqrt{3}}{4}=\frac{5^2\cdot(\sqrt{2})^2\cdot\sqrt{3}}{4}=\frac{25\cdot2\sqrt{3}}{4}=\frac{\not50^2^5\sqrt{3}}{\not4_{2}}=\frac{25\sqrt{3}}{2}\ \ cm^2[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Pole trójkąta równobocznego obliczamy korzystając ze wzoru
[tex]P=\frac{a^2\sqrt{3}}{4}\\\\gdzie\\\\a\ \ - dlugo\'s\'c\ \ boku\ \ tr\'ojkata\\\\\\a)\ \ 8cm\\\\P=\frac{8^2\sqrt{3}}{4}=\frac{\not64^1^6\sqrt{3}}{\not4_{1}}=16\sqrt{3}\ \ cm^2\\\\\\b)\ \ 10cm\\\\P=\frac{10^2\sqrt{3}}{4}=\frac{\not100^2^5\sqrt{3}}{\not4_{1}}=25\sqrt{3}\ \ cm^2\\\\\\c)\ \ 2\sqrt{3}cm\\\\P=\frac{(2\sqrt{3})^2\cdot\sqrt{3}}{4}=\frac{2^2\cdot(\sqrt{3})^2\cdot\sqrt{3}}{4}=\frac{4\cdot3\sqrt{3}}{4}=\frac{\not12^3\sqrt{3}}{\not4_{1}}=3\sqrt{3}\ \ cm^2[/tex]
[tex]d)\ \ 5\sqrt{2}cm\\\\P=\frac{(5\sqrt{2})^2\cdot\sqrt{3}}{4}=\frac{5^2\cdot(\sqrt{2})^2\cdot\sqrt{3}}{4}=\frac{25\cdot2\sqrt{3}}{4}=\frac{\not50^2^5\sqrt{3}}{\not4_{2}}=\frac{25\sqrt{3}}{2}\ \ cm^2[/tex]