Odpowiedź:
Szczegółowe wyjaśnienie:
jedynka trygonometryczna:
[tex]sin^{2}\alpha + cos^{2}\alpha =1[/tex]
[tex]sin^{2} \alpha =1-cos^{2} \alpha \\sin^{2} \alpha =1-(-\frac{1}{3} )^{2} =\frac{8}{9} \\sin\alpha =\frac{2\sqrt{2} }{3} \\\\tg\alpha =\frac{sin\alpha }{cos\alpha } =\frac{\frac{2\sqrt{2}}{3} }{-\frac{1}{3} } =-2\sqrt{2}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Verified answer
Odpowiedź:
Szczegółowe wyjaśnienie:
jedynka trygonometryczna:
[tex]sin^{2}\alpha + cos^{2}\alpha =1[/tex]
[tex]sin^{2} \alpha =1-cos^{2} \alpha \\sin^{2} \alpha =1-(-\frac{1}{3} )^{2} =\frac{8}{9} \\sin\alpha =\frac{2\sqrt{2} }{3} \\\\tg\alpha =\frac{sin\alpha }{cos\alpha } =\frac{\frac{2\sqrt{2}}{3} }{-\frac{1}{3} } =-2\sqrt{2}[/tex]