[tex]Dane:\\\lambda = 450 \ nm = 450\cdot10^{-9} \ m = 4,5\cdot10^{-7} \ m\\c = 3\cdot10^{8}\frac{m}{s} \ - \ predko\'s\'c \ \'swiatla\\h = 6,63\cdot10^{-34} \ J\cdot s \ - \stala \ Plancka\\Szukane:\\f = ?\\E_{f} = ?[/tex]
Rozwiązanie
1.
Częstotliwość:
[tex]f = \frac{c}{\lambda}\\\\f = \frac{3\cdot10^{8}\frac{m}{s}}{4,5\cdot10^{-7} \ m} = 0,(6)\cdot10^{15} \ Hz\\\\\boxed{f \approx6,67\cdot10^{14} \ Hz}[/tex]
Energia fotonu:
[tex]E_{f} = h\cdot f\\\\E_{f} = 6,63\cdot10^{-34} \ J\cdot s\cdot6,67\cdot10^{14}\frac{1}{s} \approx44,22\cdot10^{-20} \ J\\\\\boxed{E_{f}\approx4,4\cdot10^{-19} \ J}[/tex]
2.
[tex]Dane:\\\lambda = 520 \ nm = 520\cdot10^{-9} \ m = 5,2\cdot10^{-7} \ m\\Szuksne:\\f = ?\\E_{f} = ?[/tex]
[tex]f =\frac{c}{\lambda}\\\\f =\frac{3\cdot10^{8}\frac{m}{s}}{5,2\cdot10^{-7} \ m}\approx0,577\cdot10^{15} \ Hz\\\\\boxed{f \approx5,77\cdot10^{14} \ Hz}[/tex]
[tex]E_{f}+ = h\cdot f\\\\E_{f} = 6,63\cdot10^{-34} \J\cdot s\cdot5,77\cdot10^{14} \ \frac{1}{s}\approx38,26\cdot10^{-20} \ J\\\\\boxed{E_{f}\approx3,8\cdot10^{-19} \ J}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
[tex]Dane:\\\lambda = 450 \ nm = 450\cdot10^{-9} \ m = 4,5\cdot10^{-7} \ m\\c = 3\cdot10^{8}\frac{m}{s} \ - \ predko\'s\'c \ \'swiatla\\h = 6,63\cdot10^{-34} \ J\cdot s \ - \stala \ Plancka\\Szukane:\\f = ?\\E_{f} = ?[/tex]
Rozwiązanie
1.
Częstotliwość:
[tex]f = \frac{c}{\lambda}\\\\f = \frac{3\cdot10^{8}\frac{m}{s}}{4,5\cdot10^{-7} \ m} = 0,(6)\cdot10^{15} \ Hz\\\\\boxed{f \approx6,67\cdot10^{14} \ Hz}[/tex]
Energia fotonu:
[tex]E_{f} = h\cdot f\\\\E_{f} = 6,63\cdot10^{-34} \ J\cdot s\cdot6,67\cdot10^{14}\frac{1}{s} \approx44,22\cdot10^{-20} \ J\\\\\boxed{E_{f}\approx4,4\cdot10^{-19} \ J}[/tex]
2.
[tex]Dane:\\\lambda = 520 \ nm = 520\cdot10^{-9} \ m = 5,2\cdot10^{-7} \ m\\Szuksne:\\f = ?\\E_{f} = ?[/tex]
Rozwiązanie
Częstotliwość:
[tex]f =\frac{c}{\lambda}\\\\f =\frac{3\cdot10^{8}\frac{m}{s}}{5,2\cdot10^{-7} \ m}\approx0,577\cdot10^{15} \ Hz\\\\\boxed{f \approx5,77\cdot10^{14} \ Hz}[/tex]
Energia fotonu:
[tex]E_{f}+ = h\cdot f\\\\E_{f} = 6,63\cdot10^{-34} \J\cdot s\cdot5,77\cdot10^{14} \ \frac{1}{s}\approx38,26\cdot10^{-20} \ J\\\\\boxed{E_{f}\approx3,8\cdot10^{-19} \ J}[/tex]