D 7. a) Wypisz pary trójkątów podobnych (rysunek poniżej). Odpowiedź uza- sadnij. b) W trójkącie prostokątnym o przyprostokąt- nych długości 3 i 4 poprowadzono wysokość z wierzchołka kąta prostego. Oblicz długości od- cinków, na jakie wysokość ta podzieliła przeciw- prostokątną.
Trójkąt ABC jest podobny do trójkąta ACD ponieważ mają wspólny kąt przy wierzchołku A, jeden z katów w obu trójkątach jest prosty (90°), a trzecie kąty są równe - wynika to z sumy kątów w trójkącie.
Trójkąt ABC jest podobny do trójkąta BCD ponieważ mają wspólny kąt przy wierzchołku B, jeden z katów w obu trójkątach jest prosty (90°), a trzecie kąty są równe - wynika to z sumy kątów w trójkącie.
Trójkąt ACD do trójkąta BCD ponieważ oba są podobne do trójkąta ABC.
b)
trójkąty są podobne więc stosunek boków odpowiadających jest równy
Verified answer
Odpowiedź:
Szczegółowe wyjaśnienie:
a)
Trójkąt ABC jest podobny do trójkąta ACD ponieważ mają wspólny kąt przy wierzchołku A, jeden z katów w obu trójkątach jest prosty (90°), a trzecie kąty są równe - wynika to z sumy kątów w trójkącie.
Trójkąt ABC jest podobny do trójkąta BCD ponieważ mają wspólny kąt przy wierzchołku B, jeden z katów w obu trójkątach jest prosty (90°), a trzecie kąty są równe - wynika to z sumy kątów w trójkącie.
Trójkąt ACD do trójkąta BCD ponieważ oba są podobne do trójkąta ABC.
b)
trójkąty są podobne więc stosunek boków odpowiadających jest równy
[tex]\frac{5}{4} =\frac{x}{y}\\\\\frac{5}{4} =\frac{4}{y}\\\\5y=4*4\\y=\frac{16}{5} =3\frac{1}{5}[/tex]
[tex]\frac{5}{3} =\frac{a}{b} \\\\\frac{5}{3} =\frac{3}{b} \\\\5*b=3*3\\b=\frac{9}{5} =1\frac{4}{5}[/tex]
Sprawdzenie
[tex]b+y=1\frac{4}{5} +3\frac{1}{5} =5[/tex]