Odpowiedź:
a)
f ( x) = - 0,75 x
f ( - x) = - 0,75*( - x) = 0,75 x = - ( - 0,75 x) = - f (x)
b)
f( x ) = 4 x³ + 2 x
f ( - x) = 4*( - x)³ + 2*( - x) = - 4 x³ - 2 x = - ( 4 x³ + 2 x ) = - f (x)
c)
f ( x ) = [tex]\frac{8}{x}[/tex]
f ( - x) = [tex]\frac{8}{- x} = - \frac{8}{x} = - f( x)[/tex]
d )
f( x ) = [tex]\frac{x^2 - 1}{4 x}[/tex]
f ( - x ) = [tex]\frac{(-x)^2 - 1}{4*(- x)} = \frac{x^2 - 1}{- 4 x} = - \frac{x^2 - 1}{4 x} = - f ( x )[/tex]
e )
f ( x) = [tex]\frac{x^5 - 8 x}{( x - 1)*( x + 1)}[/tex]
f ( - x ) = [tex]\frac{(-x)^5 - 8*( - x)}{( - x - 1)*(- x + 1)} = \frac{- x^5 + 8 x}{- ( x+ 1)*( - ( x - 1))} =[/tex] [tex]- \frac{x^5 - 8 x}{(x - 1)*(x + 1)} = - f ( x)[/tex]
f )
f ( x ) = [tex]\frac{12 + x^8}{x - x^3}[/tex]
f ( - x ) = [tex]\frac{12 + x^8}{- x - ( - x)^3} = \frac{12 + x^8}{- x + x^3} = - \frac{12 + x^8}{x - x^3} = - f ( x)[/tex]
bo [tex]( - x )^8 = x^8[/tex]
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a)
f ( x) = - 0,75 x
f ( - x) = - 0,75*( - x) = 0,75 x = - ( - 0,75 x) = - f (x)
b)
f( x ) = 4 x³ + 2 x
f ( - x) = 4*( - x)³ + 2*( - x) = - 4 x³ - 2 x = - ( 4 x³ + 2 x ) = - f (x)
c)
f ( x ) = [tex]\frac{8}{x}[/tex]
f ( - x) = [tex]\frac{8}{- x} = - \frac{8}{x} = - f( x)[/tex]
d )
f( x ) = [tex]\frac{x^2 - 1}{4 x}[/tex]
f ( - x ) = [tex]\frac{(-x)^2 - 1}{4*(- x)} = \frac{x^2 - 1}{- 4 x} = - \frac{x^2 - 1}{4 x} = - f ( x )[/tex]
e )
f ( x) = [tex]\frac{x^5 - 8 x}{( x - 1)*( x + 1)}[/tex]
f ( - x ) = [tex]\frac{(-x)^5 - 8*( - x)}{( - x - 1)*(- x + 1)} = \frac{- x^5 + 8 x}{- ( x+ 1)*( - ( x - 1))} =[/tex] [tex]- \frac{x^5 - 8 x}{(x - 1)*(x + 1)} = - f ( x)[/tex]
f )
f ( x ) = [tex]\frac{12 + x^8}{x - x^3}[/tex]
f ( - x ) = [tex]\frac{12 + x^8}{- x - ( - x)^3} = \frac{12 + x^8}{- x + x^3} = - \frac{12 + x^8}{x - x^3} = - f ( x)[/tex]
bo [tex]( - x )^8 = x^8[/tex]
Szczegółowe wyjaśnienie: