Jeżeli ma być wykres, to warto się pokusić o aproksymację średnio-kwadratową tych danych linią prostą. Wybranie jednego punktu i obliczenie rezystancji nie gwarantuje wystarczającej dokładności.
Aproksymację najłatwiej zrobić w Excelu dodając linię trendu.
Wykres co prawda ma postać U=f(I), ale w ten sposób lepiej widać "prawo Ohma".
2)
Rezystancja to współczynnik kierunkowy prostej aproksymującej dane: U=R*I
R=5,9869 Ω
3)
....spowodujemy 3 krotne zmniejszenie natężenia.
Opór jest parametrem obwodu i pozostaje stały (R=5,9869 Ω). Stąd prawo Ohma dla obwodów liniowych: Prąd płynący w obwodzie jest proporcjonalny do napięcia. I nic więcej poza to zdanie!
Odpowiedź:
2. Dane najlepiej dopasowanego punktu
U = 18V
I = 3 A
R = U/I = 18V/3A = 6Ω
R = 6 Ω
3.
.... trzykrotne zmniejszenie natężenia prądu
... opór będzie równy 6 Ω
(opór nie zależy od napięcia)
Jeżeli ma być wykres, to warto się pokusić o aproksymację średnio-kwadratową tych danych linią prostą. Wybranie jednego punktu i obliczenie rezystancji nie gwarantuje wystarczającej dokładności.
Aproksymację najłatwiej zrobić w Excelu dodając linię trendu.
Wykres co prawda ma postać U=f(I), ale w ten sposób lepiej widać "prawo Ohma".
2)
Rezystancja to współczynnik kierunkowy prostej aproksymującej dane: U=R*I
R=5,9869 Ω
3)
....spowodujemy 3 krotne zmniejszenie natężenia.
Opór jest parametrem obwodu i pozostaje stały (R=5,9869 Ω). Stąd prawo Ohma dla obwodów liniowych: Prąd płynący w obwodzie jest proporcjonalny do napięcia. I nic więcej poza to zdanie!