1)
5^6*5^a=5^18
6+a=18
a=12
odp B
2)
a=16^7=(2^4)^7=2^28
b=32^4=(2^5)^4=2^20
c=64^3=(2^6)^3=2^18
d=4^20=(2^2)^20=2^40
c<b<a<d
3)
[tex]\frac{1}{7}^7 < \frac{1}{7}^4[/tex]
(-5)^9 < (-5)^6
(13^4)^5 = 13^7*13^13
-6^12<(-6)^12
4)
A=[tex]21^{16} : 3^{16}=\frac{3^{16}*7^{16}}{3^{16}} =7^{16}[/tex]
B=[tex]7^{66} : (7^{5})^{10}=\frac{7^{66}}{7^{50}} =7^{16}[/tex]
A=B
5)
[tex]3-\frac{1}{7}^2=3-\frac{1}{49}=2\frac{48}{49} \\\frac{4^7*5^7}{20^5} =\frac{20^7}{20^5}=20^2=400\\ (\frac{1}{2}-\frac{1}{3})^4=(\frac{3}{6}-\frac{2}{6})^4=\frac{1}{6}^4=\frac{1}{1296} \\(-2)^5+3^3=-32+27=-5\\(4^2-2^3):(-2)^2=(16-8):4=8:4=2\\\frac{7^{17}*5^{17}}{35^{15}} =\frac{35^{17}}{35^{15}}=35^2=1225\\[/tex]
6)
połowa z 2^54
[tex]\frac{2^{54}}{2}=2^{53}[/tex]
czwarta czesc 8^100
[tex]\frac{8^{100}}{4} =\frac{(2^3)^{100}}{2^2}=\frac{2^{300}}{2^2}=2^{298}\\[/tex]
7)
[tex]\sqrt{2\frac{5}{7} } * \sqrt{\frac{7}{19} } *\sqrt{16} = \sqrt{\frac{19}{7} }*\sqrt{\frac{7}{19}}*4=\sqrt{\frac{19}{7}*\frac{7}{19} }*4=\sqrt{1}*4=4\\[/tex]
odp C
8)
A FAŁSZ
7^2(pierw(2))^2=49*2=98
B FAŁSZ
[tex]\sqrt{12}*\sqrt{10}=\sqrt{120} =\sqrt{2} * \sqrt{60}[/tex]
C PRAWDA
[tex]\frac{7\sqrt{3} }{2\sqrt{3} } = 3,5[/tex]
D FAŁSZ
[tex](2\sqrt{3} )^2=4*3=12[/tex]
9
[tex]\sqrt{9+m}=6\\ 9+m=36\\m=36-9\\m=27[/tex]
10
[tex]2*\sqrt{36} +5*\sqrt[3]{64} =2*6+5*4=12+20=32\\\\\sqrt{10^2-19}=\sqrt{100-19}=\sqrt{81}=9\\ \\ \sqrt{2\frac{2}{49} }+\frac{3}{7}=\sqrt{\frac{100}{49} }+\frac{3}{7}=\frac{10}{7}+\frac{3}{7}=\frac{13}{7} \\\\\frac{10+\sqrt{4} }{\sqrt[3]{27} } =\frac{10+2}{3}=\frac{12}{3} =4\\\\\sqrt[3]{11^2+\sqrt{16} } =\sqrt[3]{121+4}=\sqrt[3]{125}=5\\ \\ \sqrt[3]{5*2+6*3-1}=\sqrt[3]{10+18-1}=\sqrt[3]{27}=3[/tex]
11
[tex]\frac{\sqrt{12}+\sqrt{75} }{\sqrt{3}} =\frac{\sqrt{4*3}+\sqrt{25*3}}{\sqrt{3}}=\frac{2\sqrt{3}+5\sqrt{3}}{\sqrt{3}} =\frac{7\sqrt{3}}{\sqrt{3}} =7[/tex]
12
[tex]a) pole prostokata=2\sqrt{3}*7\sqrt{2}=14\sqrt{6}\\\\b) obwod=4*6\sqrt{5}=24\sqrt{5}\\ \\c) pole trojkata = 5\sqrt{6}*3\sqrt{3}*\frac{1}{2}=15*6/2=15*3=45[/tex]
13
a=7pier(2)=pier(49*2)=pier(98)
b=7=pier(49)
c=2pier(10)=pier(4*10)=pier(40)
d=4pier(3)=pier(16*3)=pier(48)
a>b>d>c
14
[tex]27\sqrt{2} +7\sqrt{2} -9\sqrt{2} =25\sqrt{2} \\\\3(4\sqrt{3} -2\sqrt{5})+6(3\sqrt{5} +5\sqrt{3} )=12\sqrt{3}-6\sqrt{5}+18\sqrt{5}+30\sqrt{3}=42\sqrt{3}+12\sqrt{5}[/tex]
15
[tex]\sqrt{2} =1,41 \\\sqrt{3} = 1,73 \\\\30+5\sqrt{2} =30+5*1,41=37,05\\\\7\sqrt{3} -2\sqrt{2} -6=7*1,73-2*1,41-6=3,29[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1)
5^6*5^a=5^18
6+a=18
a=12
odp B
2)
a=16^7=(2^4)^7=2^28
b=32^4=(2^5)^4=2^20
c=64^3=(2^6)^3=2^18
d=4^20=(2^2)^20=2^40
c<b<a<d
3)
[tex]\frac{1}{7}^7 < \frac{1}{7}^4[/tex]
(-5)^9 < (-5)^6
(13^4)^5 = 13^7*13^13
-6^12<(-6)^12
4)
A=[tex]21^{16} : 3^{16}=\frac{3^{16}*7^{16}}{3^{16}} =7^{16}[/tex]
B=[tex]7^{66} : (7^{5})^{10}=\frac{7^{66}}{7^{50}} =7^{16}[/tex]
A=B
5)
[tex]3-\frac{1}{7}^2=3-\frac{1}{49}=2\frac{48}{49} \\\frac{4^7*5^7}{20^5} =\frac{20^7}{20^5}=20^2=400\\ (\frac{1}{2}-\frac{1}{3})^4=(\frac{3}{6}-\frac{2}{6})^4=\frac{1}{6}^4=\frac{1}{1296} \\(-2)^5+3^3=-32+27=-5\\(4^2-2^3):(-2)^2=(16-8):4=8:4=2\\\frac{7^{17}*5^{17}}{35^{15}} =\frac{35^{17}}{35^{15}}=35^2=1225\\[/tex]
6)
połowa z 2^54
[tex]\frac{2^{54}}{2}=2^{53}[/tex]
czwarta czesc 8^100
[tex]\frac{8^{100}}{4} =\frac{(2^3)^{100}}{2^2}=\frac{2^{300}}{2^2}=2^{298}\\[/tex]
7)
[tex]\sqrt{2\frac{5}{7} } * \sqrt{\frac{7}{19} } *\sqrt{16} = \sqrt{\frac{19}{7} }*\sqrt{\frac{7}{19}}*4=\sqrt{\frac{19}{7}*\frac{7}{19} }*4=\sqrt{1}*4=4\\[/tex]
odp C
8)
A FAŁSZ
7^2(pierw(2))^2=49*2=98
B FAŁSZ
[tex]\sqrt{12}*\sqrt{10}=\sqrt{120} =\sqrt{2} * \sqrt{60}[/tex]
C PRAWDA
[tex]\frac{7\sqrt{3} }{2\sqrt{3} } = 3,5[/tex]
D FAŁSZ
[tex](2\sqrt{3} )^2=4*3=12[/tex]
9
[tex]\sqrt{9+m}=6\\ 9+m=36\\m=36-9\\m=27[/tex]
10
[tex]2*\sqrt{36} +5*\sqrt[3]{64} =2*6+5*4=12+20=32\\\\\sqrt{10^2-19}=\sqrt{100-19}=\sqrt{81}=9\\ \\ \sqrt{2\frac{2}{49} }+\frac{3}{7}=\sqrt{\frac{100}{49} }+\frac{3}{7}=\frac{10}{7}+\frac{3}{7}=\frac{13}{7} \\\\\frac{10+\sqrt{4} }{\sqrt[3]{27} } =\frac{10+2}{3}=\frac{12}{3} =4\\\\\sqrt[3]{11^2+\sqrt{16} } =\sqrt[3]{121+4}=\sqrt[3]{125}=5\\ \\ \sqrt[3]{5*2+6*3-1}=\sqrt[3]{10+18-1}=\sqrt[3]{27}=3[/tex]
11
[tex]\frac{\sqrt{12}+\sqrt{75} }{\sqrt{3}} =\frac{\sqrt{4*3}+\sqrt{25*3}}{\sqrt{3}}=\frac{2\sqrt{3}+5\sqrt{3}}{\sqrt{3}} =\frac{7\sqrt{3}}{\sqrt{3}} =7[/tex]
12
[tex]a) pole prostokata=2\sqrt{3}*7\sqrt{2}=14\sqrt{6}\\\\b) obwod=4*6\sqrt{5}=24\sqrt{5}\\ \\c) pole trojkata = 5\sqrt{6}*3\sqrt{3}*\frac{1}{2}=15*6/2=15*3=45[/tex]
13
a=7pier(2)=pier(49*2)=pier(98)
b=7=pier(49)
c=2pier(10)=pier(4*10)=pier(40)
d=4pier(3)=pier(16*3)=pier(48)
a>b>d>c
14
[tex]27\sqrt{2} +7\sqrt{2} -9\sqrt{2} =25\sqrt{2} \\\\3(4\sqrt{3} -2\sqrt{5})+6(3\sqrt{5} +5\sqrt{3} )=12\sqrt{3}-6\sqrt{5}+18\sqrt{5}+30\sqrt{3}=42\sqrt{3}+12\sqrt{5}[/tex]
15
[tex]\sqrt{2} =1,41 \\\sqrt{3} = 1,73 \\\\30+5\sqrt{2} =30+5*1,41=37,05\\\\7\sqrt{3} -2\sqrt{2} -6=7*1,73-2*1,41-6=3,29[/tex]