Odpowiedź:
[tex]\huge\boxed {~~zad.3~~log_{7}49-2log_{2}\sqrt{2} =1~~}[/tex]
[tex]\huge\boxed {~~zad.4~~log_{\sqrt{2} }2\sqrt{2} =3~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów:
Obliczamy :
[tex]zad.3\\\\log_{7}49-2log_{2}\sqrt{2} =log_{7}7^{2}-2log_{2}2^{\frac{1}{2} }=2\cdot log_{7}7-2\!\!\!\!\diagup^1\cdot\dfrac{1}{2\!\!\!\!\diagup_1} \cdot log_{2}2=2\cdot 1-1\cdot 1=2-1=1[/tex]
[tex]zad.4\\\\log_{\sqrt{2} }2\sqrt{2} =log_{\sqrt{x} }(2\cdot \sqrt{2} )=log_{\sqrt{2} }2+log_{\sqrt{2} }\sqrt{2} =\dfrac{1}{log_{2}\sqrt{2} } +1=\\\\=\dfrac{1}{log_{2}2^{\frac{1}{2} }} +1=\dfrac{1}{\frac{1}{2} \cdot log_{2}2} +1=\frac{1}{\frac{1}{2} \cdot 1} +1=\dfrac{1}{\frac{1}{2} } +1=1\div \dfrac{1}{2} +1=1\cdot \dfrac{2}{1} +1=2+1=3[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\huge\boxed {~~zad.3~~log_{7}49-2log_{2}\sqrt{2} =1~~}[/tex]
[tex]\huge\boxed {~~zad.4~~log_{\sqrt{2} }2\sqrt{2} =3~~}[/tex]
Szczegółowe wyjaśnienie:
Korzystamy ze wzorów:
Obliczamy :
[tex]zad.3\\\\log_{7}49-2log_{2}\sqrt{2} =log_{7}7^{2}-2log_{2}2^{\frac{1}{2} }=2\cdot log_{7}7-2\!\!\!\!\diagup^1\cdot\dfrac{1}{2\!\!\!\!\diagup_1} \cdot log_{2}2=2\cdot 1-1\cdot 1=2-1=1[/tex]
[tex]zad.4\\\\log_{\sqrt{2} }2\sqrt{2} =log_{\sqrt{x} }(2\cdot \sqrt{2} )=log_{\sqrt{2} }2+log_{\sqrt{2} }\sqrt{2} =\dfrac{1}{log_{2}\sqrt{2} } +1=\\\\=\dfrac{1}{log_{2}2^{\frac{1}{2} }} +1=\dfrac{1}{\frac{1}{2} \cdot log_{2}2} +1=\frac{1}{\frac{1}{2} \cdot 1} +1=\dfrac{1}{\frac{1}{2} } +1=1\div \dfrac{1}{2} +1=1\cdot \dfrac{2}{1} +1=2+1=3[/tex]