n = Número de lados
[tex](n - 2) \times 180°[/tex]
[tex] \frac{180° \times (n - 2)}{2} \\ [/tex]
[tex](n - 2) \times 180° + \frac{180° \times (n - 2)}{2} = 3780° \\ 180n - 360° + \frac{180n - 360°}{2} = 3780° \\ 180n - 360° + 90n - 180° = 3780° \\ 90n - 540° = 3780° \\ 90n = 3780° + 540° \\ 90n = 4320° \\ n = \frac{4320°}{90} \\ n = 48[/tex]
[tex] \frac{n \times (n - 3)}{2} \\ \frac{48 \times (48 - 3)}{2} \\ \frac{48 \times 45}{2} \\ \frac{2160}{2} \\ 1080[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
RESOLUCIÓN:
n = Número de lados
[tex](n - 2) \times 180°[/tex]
[tex] \frac{180° \times (n - 2)}{2} \\ [/tex]
[tex](n - 2) \times 180° + \frac{180° \times (n - 2)}{2} = 3780° \\ 180n - 360° + \frac{180n - 360°}{2} = 3780° \\ 180n - 360° + 90n - 180° = 3780° \\ 90n - 540° = 3780° \\ 90n = 3780° + 540° \\ 90n = 4320° \\ n = \frac{4320°}{90} \\ n = 48[/tex]
[tex] \frac{n \times (n - 3)}{2} \\ \frac{48 \times (48 - 3)}{2} \\ \frac{48 \times 45}{2} \\ \frac{2160}{2} \\ 1080[/tex]
RESPUESTA:
Se pueden trazar un total de 1080 diagonales.