Rosa753 - Página 1 - En clase de física y química es frecuente que un alumno que está resolviendo un problema numérico pregunte por el número de decimales que debe escribir como resultado de una operación aritmética. También es frecuente que, ante la duda, presente un resultado final como 3,0112345 · 10-6, es decir, escriba todos los decimales que la calculadora le ofrece. El principal objetivo que se plantea este artículo es recordar las reglas que permiten cumplir con una correcta utilización de las cifras significativas de un número cuando se realizan operaciones matemáticas, pero también, puestos a conocer dichas reglas, analizar la idoneidad de las mismas respecto de la propagación de errores. Finalmente, una vez cumplidos estos objetivos, se explican las estrategias a seguir, respecto de la utilización de cifras significativas, en la resolución de problemas de física o química. La presentación del resultado numérico de una medida directa, por ejemplo, de la longitud de una mesa, tiene poco valor si no se conoce algo de la exactitud de dicha medida. Una de las mejores maneras de trabajar consiste en realizar más de una medida y proceder con el tratamiento estadístico de los datos para establecer así un resultado con un buen límite de confianza. El procedimiento seguido en el registro de medidas en un laboratorio debe ir por este camino, con un tratamiento estadístico que genere un límite de confianza superior al 90%, aunque lo más normal es que éste sea del 68%, correspondiente a la desviación estándar absoluta. Ahora bien, fuera del laboratorio (y en ocasiones dentro) lo más común es utilizar el llamado convenio de cifras significativas. Espero te sirva :)
- Página 1 - En clase de física y química es frecuente que un alumno que está resolviendo un problema numérico pregunte por el número de decimales que debe escribir como resultado de una operación aritmética. También es frecuente que, ante la duda, presente un resultado final como 3,0112345 · 10-6, es decir, escriba todos los decimales que la calculadora le ofrece. El principal objetivo que se plantea este artículo es recordar las reglas que permiten cumplir con una correcta utilización de las cifras significativas de un número cuando se realizan operaciones matemáticas, pero también, puestos a conocer dichas reglas, analizar la idoneidad de las mismas respecto de la propagación de errores. Finalmente, una vez cumplidos estos objetivos, se explican las estrategias a seguir, respecto de la utilización de cifras significativas, en la resolución de problemas de física o química. La presentación del resultado numérico de una medida directa, por ejemplo, de la longitud de una mesa, tiene poco valor si no se conoce algo de la exactitud de dicha medida. Una de las mejores maneras de trabajar consiste en realizar más de una medida y proceder con el tratamiento estadístico de los datos para establecer así un resultado con un buen límite de confianza. El procedimiento seguido en el registro de medidas en un laboratorio debe ir por este camino, con un tratamiento estadístico que genere un límite de confianza superior al 90%, aunque lo más normal es que éste sea del 68%, correspondiente a la desviación estándar absoluta. Ahora bien, fuera del laboratorio (y en ocasiones dentro) lo más común es utilizar el llamado convenio de cifras significativas. Espero te sirva :)