Respuesta:
La A.
Explicación paso a paso:
[tex]$ f(x) = x\sqrt{x^2 + 1}[/tex]
Recordemos:
f(x) = u·v
=> f'(x) = u'·v + u·v'
[tex]$ \implies f'(x) = \sqrt{x^2 + 1} + x\cdot \frac{1}{2\sqrt{x^2+1} }\cdot 2x[/tex]
[tex]$ = \sqrt{x^2 + 1} + \frac{x^2}{\sqrt{x^2+1} }[/tex]
[tex]$ = \frac{x^2+1+x^2}{\sqrt{x^2+1}}[/tex]
[tex]$ = \frac{2x^2+1}{\sqrt{x^2+1}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
La A.
Explicación paso a paso:
[tex]$ f(x) = x\sqrt{x^2 + 1}[/tex]
Recordemos:
f(x) = u·v
=> f'(x) = u'·v + u·v'
[tex]$ \implies f'(x) = \sqrt{x^2 + 1} + x\cdot \frac{1}{2\sqrt{x^2+1} }\cdot 2x[/tex]
[tex]$ = \sqrt{x^2 + 1} + \frac{x^2}{\sqrt{x^2+1} }[/tex]
[tex]$ = \frac{x^2+1+x^2}{\sqrt{x^2+1}}[/tex]
[tex]$ = \frac{2x^2+1}{\sqrt{x^2+1}}[/tex]