Trigonometri
tan p = 1
p = 45° atau p = 225°
1/cos p
= 1/cos 45°
= 1/(1/√2)
= √2
atau
= 1/cos 225°
= 1/(-1/√2)
= - √2
Jawaban:
[tex] \sqrt{2} \\ dan \\ -\sqrt{2} [/tex]
Penjelasan dengan langkah-langkah:
[tex] \tan(p°) = 1 \\ arc \tan(1) = p° \\ p° = 45 = 225°[/tex]
Karena p° = 45°, Maka:
[tex] = \frac{1}{cos(p°)} \\ = \frac{1}{ \cos(45°) } = \frac{1}{ \frac{1 \sqrt{2} }{2} } = \frac{2}{ \sqrt{2} } = \frac{2}{ \sqrt{2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } = \sqrt{2}[/tex]
Dan [tex] = \frac{1}{ \cos(225°)} = - \sqrt{2}[/tex]
Atau 1/cos p° = sec p°
[tex] = \sec(p°) \\ = \sec(45°) = \sqrt{2}\\ dan\\ = \sec(p°) \\ = \sec(225°) = - \sqrt{2} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Trigonometri
tan p = 1
p = 45° atau p = 225°
1/cos p
= 1/cos 45°
= 1/(1/√2)
= √2
atau
1/cos p
= 1/cos 225°
= 1/(-1/√2)
= - √2
Verified answer
Jawaban:
[tex] \sqrt{2} \\ dan \\ -\sqrt{2} [/tex]
Penjelasan dengan langkah-langkah:
[tex] \tan(p°) = 1 \\ arc \tan(1) = p° \\ p° = 45 = 225°[/tex]
Karena p° = 45°, Maka:
[tex] = \frac{1}{cos(p°)} \\ = \frac{1}{ \cos(45°) } = \frac{1}{ \frac{1 \sqrt{2} }{2} } = \frac{2}{ \sqrt{2} } = \frac{2}{ \sqrt{2} } \times \frac{ \sqrt{2} }{ \sqrt{2} } = \sqrt{2}[/tex]
Dan [tex] = \frac{1}{ \cos(225°)} = - \sqrt{2}[/tex]
Atau 1/cos p° = sec p°
[tex] = \sec(p°) \\ = \sec(45°) = \sqrt{2}\\ dan\\ = \sec(p°) \\ = \sec(225°) = - \sqrt{2} [/tex]