Respuesta:
[tex]4356[/tex]
Explicación:
[tex]R = 1+8+27+64+125+...+1331[/tex]
[tex]R=1^{3} +2^{3} +3^{3} + ... + 11^{3}[/tex]
[tex]R = 1^{3} + 2^{3} +3^{3} +...+n^{3} = \frac{n^{2}(n+1)^{2} }{4}[/tex]
[tex]R = \frac{(11)^{2}(11+1)^{2} }{4} =\frac{121(12)^{2} }{4} =\frac{121(144)}{4} = 4356[/tex]
[tex]R = 4356[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Respuesta:
[tex]4356[/tex]
Explicación:
[tex]R = 1+8+27+64+125+...+1331[/tex]
[tex]R=1^{3} +2^{3} +3^{3} + ... + 11^{3}[/tex]
[tex]R = 1^{3} + 2^{3} +3^{3} +...+n^{3} = \frac{n^{2}(n+1)^{2} }{4}[/tex]
[tex]R = \frac{(11)^{2}(11+1)^{2} }{4} =\frac{121(12)^{2} }{4} =\frac{121(144)}{4} = 4356[/tex]
[tex]R = 4356[/tex]