semaforesh La construcción del triángulo está relacionada con los coeficientes binomiales según la fórmula (también llamada Regla de Pascal). Si entonces para todo entero positivo n y todo entero positivo k entre 0 y n.3 El triángulo de Pascal se construye de la siguiente manera: se comienza en el número «1» centrado en la parte superior; después se escriben una serie de números en las casillas situadas en sentido diagonal descendente, a ambos lados, del siguiente modo: se suman las parejas de cifras situadas horizontalmente (1 + 1), y el resultado (2) se escribe debajo de dichas casillas; el proceso continúa escribiendo en las casillas inferiores la suma de las dos cifras situadas sobre ellas (1 + 2 = 3), etc. De manera general, esto se cumple así debido a la regla de Pascal, que indica que para todo entero positivo n y todo entero positivo k entre 0 y n. En la ilustración, en la última fila, la cifra 4 cuyas casillas situadas sobre ella corresponden a las cifras 1 y 3, se cumple que , para la cifra 6 se cumple y para la última cifra 4 ; de igual manera, se cumple propiedad para las demás filas.
La construcción del triángulo está relacionada con los coeficientes binomiales según la fórmula (también llamada Regla de Pascal). Si entonces para todo entero positivo n y todo entero positivo k entre 0 y n.3
El triángulo de Pascal se construye de la siguiente manera: se comienza en el número «1» centrado en la parte superior; después se escriben una serie de números en las casillas situadas en sentido diagonal descendente, a ambos lados, del siguiente modo: se suman las parejas de cifras situadas horizontalmente (1 + 1), y el resultado (2) se escribe debajo de dichas casillas; el proceso continúa escribiendo en las casillas inferiores la suma de las dos cifras situadas sobre ellas (1 + 2 = 3), etc. De manera general, esto se cumple así debido a la regla de Pascal, que indica que para todo entero positivo n y todo entero positivo k entre 0 y n. En la ilustración, en la última fila, la cifra 4 cuyas casillas situadas sobre ella corresponden a las cifras 1 y 3, se cumple que , para la cifra 6 se cumple y para la última cifra 4 ; de igual manera, se cumple propiedad para las demás filas.