Para los números complejos, el valor principal de las raíces cúbicas se define como:
Donde r es un número real positivo y cae en el rango:
,
entonces la raíz cúbica es
.
Esto significa que en coordenadas polares al tomar la raíz cúbica de un número complejo se está tomando la raíz cúbica del radio y el ángulo polar se está dividiendo en tres partes de tal forma que define las tres raíces. Con esta definición, la raíz cúbica de un número negativo es un número complejo, y por ejemplo no será -2, sino . En aquellos programas que aceptan resultados imaginarios (tales como Mathematica), el grafo de la raíz cúbica de x en el plano de los números reales dará como resultados valores negativos de la raíz por igual.
Para los números complejos, el valor principal de las raíces cúbicas se define como:
Donde r es un número real positivo y cae en el rango:
,entonces la raíz cúbica es
.Esto significa que en coordenadas polares al tomar la raíz cúbica de un número complejo se está tomando la raíz cúbica del radio y el ángulo polar se está dividiendo en tres partes de tal forma que define las tres raíces. Con esta definición, la raíz cúbica de un número negativo es un número complejo, y por ejemplo no será -2, sino . En aquellos programas que aceptan resultados imaginarios (tales como Mathematica), el grafo de la raíz cúbica de x en el plano de los números reales dará como resultados valores negativos de la raíz por igual.
fuente: wikipedia