Nie wiem czy to o to chodzi ale może się przyda :) "Na aktywność enzymów wpływają różne czynniki: * Temperatura. Wzrost temperatury o każde 10°C zwiększa szybkość reakcji enzymatycznych mniej więcej dwukrotnie. Jednak odbywa się to wyłącznie do poziomu temperatury powodującego denaturację białka, czyli zazwyczaj do 40 - 45°C. Denaturacja białka enzymatycznego powoduje trwałą utratę zdolności katalitycznej. Obniżanie temperatury zmniejsza szybkość reakcji biochemicznych, ale nawet zamrożenie enzymu nie powoduje trwałego utracenia jego aktywności; ponowne ogrzanie przywraca zdolność katalityczną enzymu. * pH. Większość enzymów komórkowych najszybciej działa w środowisku zbliżonym do obojętnego, czyli w pH około 7. Natomiast enzymy działające pozakomórkowo, w świetle przewodu pokarmowego, charakteryzują się znacznym zróżnicowaniem optymalnych warunków kwasowości środowiska. Wpływ pH na aktywność enzymów tłumaczy się tym, że są one białkami, a liczba dodatnich i ujemnych ładunków cząsteczki białka i ukształtowanie powierzchni cząsteczki są zależne od kwasowości środowiska. * Stężenie enzymu i substratu. W stałej temperaturze, w stałym pH i przy nadmiarze substratu szybkość reakcji chemicznej jest wprost proporcjonalna do stężenia enzymu. W przypadku gdy temperatura, pH i stężenie enzymu są utrzymane na stałym poziomie, szybkość reakcji chemicznej początkowo wzrasta, w miarę zwiększania się stężenia substratu, do pewnej wartości, a następnie ustala się na jednakowym poziomie. Dochodzi do tego w momencie, gdy wszystkie cząsteczki enzymu są połączone z substratem, tworząc kompleksy E-S. Wykres zależności szybkości reakcji od stężenia substratu nosi nazwę krzywej Michaelisa. * Inhibitory. W środowisku komórkowym występują różne substancje niskocząsteczkowe, które przyłączając się do enzymu powodują zmianę struktury przestrzennej enzymu, uniemożliwiając tworzenie kompleksów E-S (substancje te mogą również działać jako aktywatory). Istnieją też przypadki, gdy związek chemiczny, mając podobną budowę do substratu, konkuruje z nim o związanie się z centrum aktywnym enzymu. Jeżeli inhibitor występuje w dostatecznie dużym stężeniu, to może całkowicie zablokować reakcję (przyłączenie substratu). Z kolei zwiększenie stężenia substratu może spowodować wyparcie inhibitora. Odwracalna inhibicja enzymów odgrywa ważną rolę w regulacji metabolizmu. * Aktywatory. Pod wpływem różnych substancji, np. jonów, może nastąpić taka zmiana kształtu cząsteczki enzymu, która jest korzystna dla przebiegu katalizy enzymatycznej. Odbywa się to na skutek przyłączenia aktywatora do centrum aktywnego i polepszenia w ten sposób wiązania substratu." :)
Nie wiem czy to o to chodzi ale może się przyda :) "Na aktywność enzymów wpływają różne czynniki: * Temperatura. Wzrost temperatury o każde 10°C zwiększa szybkość reakcji enzymatycznych mniej więcej dwukrotnie. Jednak odbywa się to wyłącznie do poziomu temperatury powodującego denaturację białka, czyli zazwyczaj do 40 - 45°C. Denaturacja białka enzymatycznego powoduje trwałą utratę zdolności katalitycznej. Obniżanie temperatury zmniejsza szybkość reakcji biochemicznych, ale nawet zamrożenie enzymu nie powoduje trwałego utracenia jego aktywności; ponowne ogrzanie przywraca zdolność katalityczną enzymu. * pH. Większość enzymów komórkowych najszybciej działa w środowisku zbliżonym do obojętnego, czyli w pH około 7. Natomiast enzymy działające pozakomórkowo, w świetle przewodu pokarmowego, charakteryzują się znacznym zróżnicowaniem optymalnych warunków kwasowości środowiska. Wpływ pH na aktywność enzymów tłumaczy się tym, że są one białkami, a liczba dodatnich i ujemnych ładunków cząsteczki białka i ukształtowanie powierzchni cząsteczki są zależne od kwasowości środowiska. * Stężenie enzymu i substratu. W stałej temperaturze, w stałym pH i przy nadmiarze substratu szybkość reakcji chemicznej jest wprost proporcjonalna do stężenia enzymu. W przypadku gdy temperatura, pH i stężenie enzymu są utrzymane na stałym poziomie, szybkość reakcji chemicznej początkowo wzrasta, w miarę zwiększania się stężenia substratu, do pewnej wartości, a następnie ustala się na jednakowym poziomie. Dochodzi do tego w momencie, gdy wszystkie cząsteczki enzymu są połączone z substratem, tworząc kompleksy E-S. Wykres zależności szybkości reakcji od stężenia substratu nosi nazwę krzywej Michaelisa. * Inhibitory. W środowisku komórkowym występują różne substancje niskocząsteczkowe, które przyłączając się do enzymu powodują zmianę struktury przestrzennej enzymu, uniemożliwiając tworzenie kompleksów E-S (substancje te mogą również działać jako aktywatory). Istnieją też przypadki, gdy związek chemiczny, mając podobną budowę do substratu, konkuruje z nim o związanie się z centrum aktywnym enzymu. Jeżeli inhibitor występuje w dostatecznie dużym stężeniu, to może całkowicie zablokować reakcję (przyłączenie substratu). Z kolei zwiększenie stężenia substratu może spowodować wyparcie inhibitora. Odwracalna inhibicja enzymów odgrywa ważną rolę w regulacji metabolizmu. * Aktywatory. Pod wpływem różnych substancji, np. jonów, może nastąpić taka zmiana kształtu cząsteczki enzymu, która jest korzystna dla przebiegu katalizy enzymatycznej. Odbywa się to na skutek przyłączenia aktywatora do centrum aktywnego i polepszenia w ten sposób wiązania substratu." :)