Odpowiedź:
Szczegółowe wyjaśnienie:
a.
[tex]2-\frac{x+3}{3} < \frac{2x-3}{2}[/tex] /*6
12-2(x+3)<3(2x-3)
12-2x-6<6x-9
-2x-6x<-9-6
-8x<-15
x>[tex]\frac{15}{8}[/tex]
x∈( [tex]1\frac{7}{8}[/tex], +∞)
b.
[tex]\frac{2-x}{2}-\frac{2x-1}{3}\leq 1-x[/tex] /*6
3(2-x)-2(2x-1)≤6-6x
6-3x-4x+2≤6-6x
-7x+6x≤6-8
-x≤-2
x≥2
x∈<2, +∞)
c.
[tex]\frac{x+4}{12}+1\geq \frac{x}{6} -\frac{3-x}{4}[/tex] /*12
x+4+12≥2x-3(3-x)
x+16≥2x-9+3x
x-5x≥-9-16
-4x≥-25
x≤[tex]\frac{25}{4}[/tex]
x∈(-∞, [tex]6\frac{1}{4}[/tex] >
d.
[tex]\frac{3x+1}{4} -\frac{6-2x}{5} > -\frac{1}{20} -\frac{x-1}{2}[/tex] /*20
5(3x+1)-4(6-2x)>-1-10(x-1)
15x+5-24+8x>-1-10x+10
23x+10x>9+19
33x>28
x>[tex]\frac{28}{33}[/tex]
x∈([tex]\frac{28}{33}[/tex] , +∞)
e.
[tex]-\frac{1}{6}x -\frac{2x-5}{4} \geq 3-\frac{8x-3}{3}[/tex] /*12
-2x-3(2x-5)≥36-4(8x-3)
-2x-6x+15≥36-32x+12
-8x+32x≥48-15
24x≥33
x≥[tex]\frac{33}{24}[/tex]
x∈<[tex]1\frac{9}{24}[/tex], +∞)
f.
[tex]\frac{x-1}{3} -\frac{2x-1}{6} < \frac{1}{2} -\frac{x-3}{5}[/tex] /*30
10(x-1)-5(2x-1)<15-6(x-3)
10x-10-10x+5<15-6x+18
6x<33+5
6x<38
x<[tex]\frac{38}{6}[/tex]
x∈(-∞, [tex]6\frac{2}{6}[/tex])
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Szczegółowe wyjaśnienie:
a.
[tex]2-\frac{x+3}{3} < \frac{2x-3}{2}[/tex] /*6
12-2(x+3)<3(2x-3)
12-2x-6<6x-9
-2x-6x<-9-6
-8x<-15
x>[tex]\frac{15}{8}[/tex]
x∈( [tex]1\frac{7}{8}[/tex], +∞)
b.
[tex]\frac{2-x}{2}-\frac{2x-1}{3}\leq 1-x[/tex] /*6
3(2-x)-2(2x-1)≤6-6x
6-3x-4x+2≤6-6x
-7x+6x≤6-8
-x≤-2
x≥2
x∈<2, +∞)
c.
[tex]\frac{x+4}{12}+1\geq \frac{x}{6} -\frac{3-x}{4}[/tex] /*12
x+4+12≥2x-3(3-x)
x+16≥2x-9+3x
x-5x≥-9-16
-4x≥-25
x≤[tex]\frac{25}{4}[/tex]
x∈(-∞, [tex]6\frac{1}{4}[/tex] >
d.
[tex]\frac{3x+1}{4} -\frac{6-2x}{5} > -\frac{1}{20} -\frac{x-1}{2}[/tex] /*20
5(3x+1)-4(6-2x)>-1-10(x-1)
15x+5-24+8x>-1-10x+10
23x+10x>9+19
33x>28
x>[tex]\frac{28}{33}[/tex]
x∈([tex]\frac{28}{33}[/tex] , +∞)
e.
[tex]-\frac{1}{6}x -\frac{2x-5}{4} \geq 3-\frac{8x-3}{3}[/tex] /*12
-2x-3(2x-5)≥36-4(8x-3)
-2x-6x+15≥36-32x+12
-8x+32x≥48-15
24x≥33
x≥[tex]\frac{33}{24}[/tex]
x∈<[tex]1\frac{9}{24}[/tex], +∞)
f.
[tex]\frac{x-1}{3} -\frac{2x-1}{6} < \frac{1}{2} -\frac{x-3}{5}[/tex] /*30
10(x-1)-5(2x-1)<15-6(x-3)
10x-10-10x+5<15-6x+18
6x<33+5
6x<38
x<[tex]\frac{38}{6}[/tex]
x∈(-∞, [tex]6\frac{2}{6}[/tex])