" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
=SIN² A+SEC² A+2 SIN A SEC A + SEC² A + COSEC² A+2COSACOSECA
=SIN²A+COS²A+SEC²A+COSEC²A+2(SINASECA+SECACOSECA)
=1+SEC²A+COSEC²A+2(SINA/COSA+COSA/SINA)
=1+SEC²A+COSEC²A+2(SIN²A+COS²A/COSASINA)
=1+SEC²A+COSEC²A+2(1/COSASINA)
=1+SEC²A+COSEC²A+2(1/COSA.1/SINA)
=1+SEC²A+COSEC²A+2SECACOSECA
=(1 + SEC A COSECA)² TERBUKTI
= Sin²A + 2SinASecA + Sec²A + Cos²A + 2CosACsc²A + Csc²A (dari yg pakai ciri)
= 1 + 2SinA + 2CosA + 1 + 1
CosA SinA Cos²A Sin²A
= 1 + 2Cos²A + 2Cos²A + Sin²A + Cos²A
SinACosA Sin²ACos²A
= 1 + 2(Cos²A + Sin²A) + 1
SinACosA Sin²ACos²A
= 1 + 2(1) + 1
SinACosA Sin²ACos²A
= 1 + 2( 1 . 1 ) + 1 . 1
SinA CosA Sn²A Cos²A
= 1 + 2CosASinA + Cos²ASec²A
= (SecACosA)² + 2SinACosA + 1 faktorkan
= (1 + SecACosA)(1 + SecACosA)
= (1 + SecACosA)²
Jadi terbukti bahwa (SinA + SecA)² + (CosA + CscA) = (1 + SecACscA)²