Al resolver las ecuaciones radicales se obtiene:
2°) x = 1
4°) x = 7
6°) x = 10
8°) x = 18
10°) x = 2
12°) x = 10
Explicación paso a paso:
2°) 3√(x+1) = √18
Elevar al cuadrado;
[3√(x+1)]² = (√18)²
9(x+1) = 18
Despejar x;
x+1 = 18/9
x + 1 = 2
x = 2 - 1
x = 1
4°) √(3x+4) - 5 = 0
√(3x+4) = 5
[√(3x+4)]² = 5²
3x + 4 = 25
3x = 25 - 4
3x = 21
x = 21/3
x = 7
6°) √(5x-14) = 2√(x-1)
[√(5x-14)]² = [2√(x-1)]²
5x - 14 = 4(x - 1)
5x - 14 = 4x - 4
5x - 4x = 14 - 4
x = 10
8°) √2x + 9 =3
√2x = 3 - 9
√2x = -6
(√2x)² = (-6)²
2x = 36
x = 36/2
x = 18
10°) 2√(x-2) + 1 = 5
2√(x-2) = 5 - 1
Elevar el cuadrado;
[2√(x-2)]² = 4²
4(x-2) = 16
4x - 8 = 16
4x = 16 - 8
x = 8/4
x = 2
12°) ∛(2x+7) = 3
Elevar al cubo;
[∛(2x+7)]³ = 3³
2x + 7 = 27
2x = 27 - 7
2x = 20
x = 20/2
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Al resolver las ecuaciones radicales se obtiene:
2°) x = 1
4°) x = 7
6°) x = 10
8°) x = 18
10°) x = 2
12°) x = 10
Explicación paso a paso:
2°) 3√(x+1) = √18
Elevar al cuadrado;
[3√(x+1)]² = (√18)²
9(x+1) = 18
Despejar x;
x+1 = 18/9
x + 1 = 2
x = 2 - 1
x = 1
4°) √(3x+4) - 5 = 0
√(3x+4) = 5
Elevar al cuadrado;
[√(3x+4)]² = 5²
3x + 4 = 25
Despejar x;
3x = 25 - 4
3x = 21
x = 21/3
x = 7
6°) √(5x-14) = 2√(x-1)
Elevar al cuadrado;
[√(5x-14)]² = [2√(x-1)]²
5x - 14 = 4(x - 1)
5x - 14 = 4x - 4
Despejar x;
5x - 4x = 14 - 4
x = 10
8°) √2x + 9 =3
√2x = 3 - 9
√2x = -6
Elevar al cuadrado;
(√2x)² = (-6)²
2x = 36
Despejar x;
x = 36/2
x = 18
10°) 2√(x-2) + 1 = 5
2√(x-2) = 5 - 1
Elevar el cuadrado;
[2√(x-2)]² = 4²
4(x-2) = 16
4x - 8 = 16
Despejar x;
4x = 16 - 8
x = 8/4
x = 2
12°) ∛(2x+7) = 3
Elevar al cubo;
[∛(2x+7)]³ = 3³
2x + 7 = 27
Despejar x;
2x = 27 - 7
2x = 20
x = 20/2
x = 10