Buatlah contoh SPLTV ! - tak mempunyai penyelesaian
dheahandayani
Pembahasan Sistem ini tidak memiliki persamaan yang suku-x berkoefisien 1.Kita masih bisa menggunakan P1 (persamaan 1) untuk memulai proses, tetapi kali ini kita akan menggunakan variabel y karena koefisiennya 1. Dengan menggunakan 2P1 + P2 untuk mengeliminasi y pada P2, menyisakan 7x – 2z = –4. Tetapi dengan menggunakan –2P1 + P3 untuk mengeliminasi suku-y dari P3 akan menghasilkan kontradiksi.
Kita dapat menyimpulkan bahwa sistem tersebut tidak konsisten. Sehingga himpunan selesaiannya adalah himpunan kosong Ø, dan kita tidak perlu menyelesaikan sistem tersebut lebih jauh.Tidak seperti sistem linear dua variabel, SPLTV memiliki 2 bentuk ketergantungan, yaitu bergantung linear dan bergantung kongruen. Untuk membantu dalam memahami sistem yang bergantung linear, perhatikan SPLTV yang memiliki 2 persamaan: –2x + 3y – z = 5 dan x – 3y + 2z = –1. Masing-masing persamaan tersebut merepresentasikan bidang, dan jika kedua bidang tersebut tidak sejajar, irisan dari bidang-bidang tersebut akan membentuk suatu garis. Selesaian dari sistem seperti ini dapat ditulis dengan menggunakan salah satu variabel untuk menuliskan dua variabel lainnya, atau dengan menggunakan 3 bilangan berurutan yang ditulis dengan parameter.Suatu sistem dengan dua persamaan dan dua variabel atau tiga persamaan dan tiga variabel disebut dengan sistem persegi, yang berarti bahwa banyaknya persamaan dalam sistem sama dengan banyaknya variabel. Suatu sistem persamaan linear tidak dapat memiliki solusi yang tunggal jika banyaknya persamaan kurang dari banyaknya variabel.
Dengan menggunakan 2P1 + P2 untuk mengeliminasi y pada P2, menyisakan 7x – 2z = –4. Tetapi dengan menggunakan –2P1 + P3 untuk mengeliminasi suku-y dari P3 akan menghasilkan kontradiksi.
Kita dapat menyimpulkan bahwa sistem tersebut tidak konsisten. Sehingga himpunan selesaiannya adalah himpunan kosong Ø, dan kita tidak perlu menyelesaikan sistem tersebut lebih jauh.Tidak seperti sistem linear dua variabel, SPLTV memiliki 2 bentuk ketergantungan, yaitu bergantung linear dan bergantung kongruen. Untuk membantu dalam memahami sistem yang bergantung linear, perhatikan SPLTV yang memiliki 2 persamaan: –2x + 3y – z = 5 dan x – 3y + 2z = –1. Masing-masing persamaan tersebut merepresentasikan bidang, dan jika kedua bidang tersebut tidak sejajar, irisan dari bidang-bidang tersebut akan membentuk suatu garis. Selesaian dari sistem seperti ini dapat ditulis dengan menggunakan salah satu variabel untuk menuliskan dua variabel lainnya, atau dengan menggunakan 3 bilangan berurutan yang ditulis dengan parameter.Suatu sistem dengan dua persamaan dan dua variabel atau tiga persamaan dan tiga variabel disebut dengan sistem persegi, yang berarti bahwa banyaknya persamaan dalam sistem sama dengan banyaknya variabel. Suatu sistem persamaan linear tidak dapat memiliki solusi yang tunggal jika banyaknya persamaan kurang dari banyaknya variabel.