Odpowiedź:
a = 2√3 ≈ 3,46
b = 3√2 ≈ 4,23
c = 3 + √3 ≈ 4,73
więc z tw. kosinusów mamy
c² = ( 2√3)² + ( 3√2)² -2*2√3*3√2*cos γ
( 3 + √3 )² = 12 + 18 - 12√6* cos γ
12[tex]\sqrt{6}[/tex]*cos γ = 30 - ( 9 + 6√3 + 3) = 18 - 6√3
cos γ = [tex]\frac{18 - 6\sqrt{3} }{12\sqrt{6} } *\frac{\sqrt{6} }{\sqrt{6} } =\frac{18\sqrt{6} - 6\sqrt{18} }{12*6} =[/tex] [tex]\frac{18\sqrt{6} - 18\sqrt{2} }{72} = \frac{\sqrt{6} - \sqrt{2} }{4}[/tex] ≈ 0,26
γ < 90°
Δ jest ostrokątny.
====================
b ) a² = b² + c² -2 b*c*cos α
12 = 18 + 12 + 6√3 - 2*3√2*( 3 + √3)*cos α
12 = 30 + 6√3 - ( 18√2 + 6√6)*cos α
( 18√2 + 6√3)*cos α = 18 + 6√3
cos α = [tex]\frac{18 + 6\sqrt{3} }{18\sqrt{2} + 6\sqrt{3} } = \frac{3 + \sqrt{3} }{3\sqrt{2} +\sqrt{3} } *[/tex][tex]\frac{3\sqrt{2}-\sqrt{3} }{3\sqrt{2} -\sqrt{3} } =[/tex] [tex]\frac{9\sqrt{2}- 3\sqrt{3} +3\sqrt{6}- 3 }{18 - 3} = \frac{9\sqrt{2} - 3\sqrt{3} +3\sqrt{6} -\sqrt{3} }{15}[/tex] ≈
≈ 0.8747
α ≈ 29°
========
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
a = 2√3 ≈ 3,46
b = 3√2 ≈ 4,23
c = 3 + √3 ≈ 4,73
więc z tw. kosinusów mamy
c² = ( 2√3)² + ( 3√2)² -2*2√3*3√2*cos γ
( 3 + √3 )² = 12 + 18 - 12√6* cos γ
12[tex]\sqrt{6}[/tex]*cos γ = 30 - ( 9 + 6√3 + 3) = 18 - 6√3
cos γ = [tex]\frac{18 - 6\sqrt{3} }{12\sqrt{6} } *\frac{\sqrt{6} }{\sqrt{6} } =\frac{18\sqrt{6} - 6\sqrt{18} }{12*6} =[/tex] [tex]\frac{18\sqrt{6} - 18\sqrt{2} }{72} = \frac{\sqrt{6} - \sqrt{2} }{4}[/tex] ≈ 0,26
γ < 90°
Δ jest ostrokątny.
====================
b ) a² = b² + c² -2 b*c*cos α
12 = 18 + 12 + 6√3 - 2*3√2*( 3 + √3)*cos α
12 = 30 + 6√3 - ( 18√2 + 6√6)*cos α
( 18√2 + 6√3)*cos α = 18 + 6√3
cos α = [tex]\frac{18 + 6\sqrt{3} }{18\sqrt{2} + 6\sqrt{3} } = \frac{3 + \sqrt{3} }{3\sqrt{2} +\sqrt{3} } *[/tex][tex]\frac{3\sqrt{2}-\sqrt{3} }{3\sqrt{2} -\sqrt{3} } =[/tex] [tex]\frac{9\sqrt{2}- 3\sqrt{3} +3\sqrt{6}- 3 }{18 - 3} = \frac{9\sqrt{2} - 3\sqrt{3} +3\sqrt{6} -\sqrt{3} }{15}[/tex] ≈
≈ 0.8747
α ≈ 29°
========
Szczegółowe wyjaśnienie: