7. sin(115) = sin(90+25) <= sin(90+25) = cos(25)
sin(115) = cos(25) = n
cos(155) = cos(180 - 25) = -cos(25)
cos(155) = -cos(25) = -n
- cos(155) = cos(25) = n
(sin(115) - cos(155))/(sin(115).cos(155)) = (n+n)/(n.(-n))
= 2n/(-n²)
= -2/n
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
7. sin(115) = sin(90+25) <= sin(90+25) = cos(25)
sin(115) = cos(25) = n
cos(155) = cos(180 - 25) = -cos(25)
cos(155) = -cos(25) = -n
- cos(155) = cos(25) = n
(sin(115) - cos(155))/(sin(115).cos(155)) = (n+n)/(n.(-n))
= 2n/(-n²)
= -2/n