" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
dan
14. lihat pertidaksamaan 3x+5y ≤ 15
x= 0 --> 3(0) + 5y ≤ 15
5y ≤ 15
y ≤ 3
y= 0 --> 3x + 5(0) ≤ 15
3x ≤ 15
x ≤ 5
z = 2x + y
= 2(5) + 3
= 13 (maximum)
15. 3x+2y ≤ 246
x=0 --> y = 123 titik (0,123) ....a1
y=0 --> x = 82 titik (82,0)... b1
x+ y ≤ 80
x=0 --> y=80 (0,80) ..a2
y=0 --> x= 80 (80,0)... b2
bandingkan nilai y pada a1 dan a2, ambil terkecil (0,80)
bandingkan nilai x pada b1 dan b2 ambil terkecil (80.0)
titik potong kedua persamaan berada dibawah sb x. shngga tidak perlu dicari
nilai maksimum 3x+4y
(0,80) = 3(0)+4(80) = 320 --> Maksimum
(80,0) = 3(80) +4(0) = 240
16 . pers 1 : 2x+y = 2
pers 2 : x+3y = 3
det = 2(3) - (1.1) = 6-1 = 5
det x = 2(3)-(1.3) = 6-3 = 3
det y = 2(3)-(2.1) = 6-2 = 4
x = det x/ det = 3/5
y = det y/det = 4/5
maksimum = 3x+4y
= 3(3/5) +4(4/5)
= 9/5+16/5
= 25/5
= 5
17. 2x+y ≤ 8
x=0 --> y=8 --> batasan 1 ≤ y ≤ 4,
y = 4
titik (0,4)
y=1 --> x= 7/2 --> batasan 0 ≤ x ≤ 7
x = 7/2
titik (7/2, 1)
nilai maksimum 5x+10y
(0,4) --> 5(0)+10(4) = 40 maksimum
(7/2, 1) --> 5(7/2) + 10(1) = 35/2+10 = 55/2 = 27,5